
SCHOOL OF COMPUTATION, INFORMATION
AND TECHNOLOGY - INFORMATICS

TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Automated Unit Testing of Solidity Smart
Contracts in an Educational Context

Batuhan Erden

SCHOOL OF COMPUTATION, INFORMATION
AND TECHNOLOGY - INFORMATICS

TECHNISCHE UNIVERSITÄT MÜNCHEN

Master’s Thesis in Informatics

Automated Unit Testing of Solidity Smart
Contracts in an Educational Context

Automatisiertes Unit Testing von Solidity
Smart Contracts im Bildungskontext

Author: Batuhan Erden
Supervisor: Prof. Dr. Florian Matthes
Advisor: Felix Hoops, M.Sc. & Burak Öz, M.Sc.
Submission Date: 15.11.2023

I confirm that this master’s thesis in informatics is my own work and I have documented all
sources and material used.

Munich, 15.11.2023 Batuhan Erden

Acknowledgements and Code Repositories

I wish to convey my heartfelt gratitude to my advisors, Felix Hoops, M.Sc., and Burak Öz,
M.Sc., for their strong leadership and support during the duration of my thesis, especially
during times of uncertainty. Additionally, profound appreciation is directed to my supervisor,
Prof. Dr. Florian Matthes, not only for his expertise in helping shape the thesis topic and
introducing innovative ideas but also for affording me the opportunity to write this thesis
under his chair for Software Engineering for Business Information Systems (SEBIS). I express
further thanks to my advisors for granting comprehensive access to the teaching material
for the Blockchain-based Systems Engineering (BBSE) course and the BBSE Bank 2.0 project.
Special acknowledgment goes to my family and friends, as well as my two musical bands,
who provided unwavering support even in the most stressful times.

The code developed during this thesis is publicly accessible and can be found in the following
GitHub repositories:

• Comparison of Test Runner Frameworks:
https://github.com/erdenbatuhan/automated-smart-contract-tester-comparison

• Automated Smart Contract Testing Service:
https://github.com/erdenbatuhan/automated-smart-contract-tester

• Web Application:
https://github.com/erdenbatuhan/automated-smart-contract-tester-web

The following are some additional GitHub repositories that are not directly related to the
main project, but still have some involvement:

• Dockerized MongoDB Replicas:
https://github.com/erdenbatuhan/dockerized-mongodb-replicas

• Example Usage of the Developed Helper Library for RabbitMQ:
https://github.com/erdenbatuhan/rabbitmq-playground

https://github.com/erdenbatuhan/automated-smart-contract-tester-comparison
https://github.com/erdenbatuhan/automated-smart-contract-tester
https://github.com/erdenbatuhan/automated-smart-contract-tester-web
https://github.com/erdenbatuhan/dockerized-mongodb-replicas
https://github.com/erdenbatuhan/rabbitmq-playground

Abstract

In the rising era of modern computing, blockchain technology has emerged as a crucial
player, enabling secure transactions within an immutable record-keeping system. Capturing
major attention from both academia and industry, its growth has encouraged continuous
development, especially in the area of smart contracts. Due to the unalterable nature of
a blockchain, it is imperative to test smart contracts to guarantee that they are free of
vulnerabilities before deployment. Therefore, automated testing of smart contracts has
become an important notion that has also found its way into educational environments to
build foundational knowledge.

This thesis proposes a scalable service for automated unit testing of Solidity smart contracts
within an educational context, allowing students to upload their smart contract inputs, which
are executed against instructor-provided tests to offer constructive feedback on their contracts.
The comparative analysis of the testing tools — Truffle, Hardhat, and Foundry — informs
the selection of the optimal one to be used for smart contract testing, considering factors like
usability, development experience, features, performance, and containerization capabilities.
The service is designed with a microservice architecture and developed with the chosen
tool used for smart contract testing. Furthermore, it is containerized using Docker and
orchestrated with Docker Compose. Following that, inter-service communication is facilitated
through RabbitMQ for stability under high loads, and Docker Swarm is utilized to enable
horizontal scaling.

The evaluation of the testing service encompasses security, stability, efficiency, and scala-
bility, confirming its ability to handle the simultaneous load of multiple submissions in a
secure and stable software package. The work concludes with discussion on the summary
of the work, possible future directions, and the extensive documentation offered for future
maintainability.

We claim that this testing service will significantly contribute to the technological develop-
ments in educational settings, aiding students in creating more secure, reliable, and robust
smart contracts before deploying them in critical applications. By utilizing an automated
smart contract tester, students can have their contracts evaluated against tests developed by
instructors, enhancing the learning process and eliminating the need for them to write their
own tests. Moreover, the scalable and load-balancing nature of the service will allow for a
smooth user experience, even during times of heavy load.

iv

Contents

Acknowledgements and Code Repositories iii

Abstract iv

1. Introduction 1
1.1. Motivation . 1
1.2. Objectives and Purpose of the Thesis . 3
1.3. Research Questions . 4
1.4. Core Use Case . 5
1.5. Structure of the Thesis . 6

2. Theoretical Background 7
2.1. Blockchain Technology . 7
2.2. Smart Contracts . 9

2.2.1. Solidity Programming Language . 10
2.2.2. Smart Contract Testing . 12
2.2.3. Test Runner Frameworks . 13

2.3. Containerization . 14
2.3.1. Docker . 16

3. Related Work 18

4. Methodology 21
4.1. Test Runner Framework Evaluation and Selection 21
4.2. Design and Appraisal of the Final Testing Service 22

4.2.1. Simultaneous Submission Management 22
4.2.2. Service Security and Stability . 23
4.2.3. Scalability and Service Distribution . 23
4.2.4. Efficiency and Performance Analysis . 23

5. Comparative Analysis of Test Runner Frameworks 24
5.1. Overview of Test Runner Frameworks . 24

5.1.1. Truffle . 24
5.1.2. Hardhat . 25
5.1.3. Foundry . 26

5.2. Selected Smart Contract Projects for Analysis . 27

v

Contents

5.3. Usability and Development Experience . 28
5.3.1. Truffle . 28
5.3.2. Hardhat . 30
5.3.3. Foundry . 32

5.4. Features and Tooling . 37
5.4.1. Code Coverage . 37
5.4.2. Assertion Libraries for Testing . 37
5.4.3. Debugging . 37
5.4.4. Mocking . 38
5.4.5. Fuzz Testing . 38
5.4.6. Gas and Memory Limit . 39

5.5. Test Output and Performance Metrics . 39
5.5.1. Gas Usage as a Performance Metric . 40

5.6. Truffle vs. Hardhat vs. Foundry: Intermediate Performance Results 40
5.7. Containerization and Scalability Assessment . 42

5.7.1. Setup . 42
5.7.2. Optimization . 44
5.7.3. Image Sizes . 45
5.7.4. Performance Results . 46
5.7.5. Scalability Assessment . 48
5.7.6. Lessons Learned and Conclusion . 50

5.8. Discussion and Recommendation . 51

6. System Design and Implementation 53
6.1. Stakeholders and Requirements . 53

6.1.1. Stakeholders . 53
6.1.2. Functional Requirements . 55
6.1.3. Non-Functional Requirements . 56

6.2. High-Level Flow . 57
6.3. Architecture . 58

6.3.1. Test Runner . 59
6.3.2. Backend Services . 60
6.3.3. RabbitMQ Instance (Message Queueing) 60
6.3.4. Frontend Application . 60

6.4. Implementation Details . 61
6.4.1. Database Selection and Data Model . 61
6.4.2. Test Runner . 62
6.4.3. Backend Services . 67
6.4.4. Message Queueing and Inter-Service Communication 70
6.4.5. Service Network Configuration and Isolation 72
6.4.6. Secret Management . 72
6.4.7. Frontend Application . 73

vi

Contents

6.5. Security and Stability . 73
6.5.1. Handling Errors and Crashes in Contract Executions 74
6.5.2. Mitigating Accidental or Intentional System Overloads 74

6.6. Scalability . 75
6.6.1. Container Orchestration Tool: Kubernetes or Docker Swarm? 76
6.6.2. Database Considerations . 76
6.6.3. RabbitMQ Cluster . 77
6.6.4. Preparing New Nodes . 77

6.7. Deployment . 78

7. Results and Evaluation 79
7.1. Security and Stability . 79
7.2. Efficiency and Performance . 80

8. Conclusion 81
8.1. Summary . 81
8.2. Future Work . 82
8.3. Documentation and Continued Maintenance . 83

A. Sample Solidity Test Cases 84

B. Performance Figures of Test Runner Frameworks 85
B.1. Containerization . 86
B.2. Scalability Capabilities . 87

C. In-depth Docker Configurations 88
C.1. Dockerfile for Project Image Creation . 88
C.2. Docker Exit Codes . 89

D. Listing of REST Endpoints 90
D.1. Endpoints for Backend Services . 90

E. Testing Service Screenshots 91
E.1. Analysis of Faulty Submissions . 95
E.2. Analysis of Successful Submissions . 97

List of Abbreviations 98

List of Figures 99

List of Tables 100

Listings 101

Bibliography 102

vii

1. Introduction

The first chapter of the thesis explains the motivation behind the work, sets out the objectives
and purpose, and defines the research questions along with the core use case. It concludes by
describing the overall structure of the thesis.

1.1. Motivation

Blockchains have recently become increasingly prevalent, revolutionizing how information
is stored and processed; this technology is structured as a sequence of blocks where once
a transaction is recorded in a block and the block is added to the chain, the record of that
transaction is immutable and cannot be tampered with or changed [1, 2]. The concept of this
decentralized, distributed, and public ledger system, along with its immutability, security,
and transparency, has attracted significant attention amongst educational institutions and
business enterprises [3].

For the continued advancement of blockchain technology, it is imperative that educational
institutions keep pace with the latest developments. Consequently, educational programs have
been integrating blockchain into their curricula, as evidenced by the Blockchain-based Systems
Engineering (BBSE) course [4] at the Technical University of Munich (TUM), demonstrating
the growing influence of this technology across several industries, such as finance, healthcare,
and data analysis [5, 6, 7]. Moreover, the decentralized and accessible nature of this technology
allows anyone to partake in the blockchain world, simplifying engagement with blockchain
systems [8].

Bitcoin [9], the first example of blockchain technology, invented the concept of a decentral-
ized ledger, thereby fostering the emergence of decentralized transactions that significantly
boosted the technology’s popularity. Since then, the emerging blockchain technology, a
rapidly evolving field, has been seeing a shift toward a decentralized computing paradigm
[10]. The applications on blockchains, known as Decentralized Applications (dApps), are a
sort of software in which the application execution is not controlled by a single party [3].

Ethereum [11], as a decentralized blockchain, was designed to provide developers with a
unified environment for building software within a new and trustworthy framework, focusing
on the secure exchange of information between objects [12]. Leveraging this decentralized
nature has allowed the creation of smart contracts, which are programs written using a
Turing-complete programming language called Solidity [11, 13]. They are stored on the
blockchain and enforce rules, checking whether specified conditions are met before any
transaction [14]. Since smart contracts are encoded in the blockchain system, they benefit
from a tamper-resistant and transparent environment, allowing them to enforce terms based

1

1. Introduction

on specific conditions without third-party involvement [15]. Moreover, Solidity continues to
be the leading language for smart contracts and is even supported by various blockchains
beyond Ethereum, such as Binance Smart Chain and Avalanche [16]. These technological
advancements, coupled with the introduction of a new programming language, have high-
lighted the significance of blockchain and smart contract development. This, in turn, will
lead to the increased incorporation of smart contract concepts within educational domains,
as critical and popular technologies are commonly integrated into educational curricula,
providing students with the opportunity to build a strong foundation in these key areas [5].

Ethereum dApps can deploy smart contracts to utilize the computational and storage
capabilities of the Ethereum blockchain for executing business logic [3]. These contracts
can be deployed and tested using Ethereum smart contract development tools, hereafter
referred to as test runner frameworks, which are continuously refined to be more robust and
adaptable to various architectures. Testing smart contracts ensures that they work as intended
and are free of vulnerabilities, especially before deployment since they cannot be altered
post-deployment [17]. Specifically, even minor errors could lead to serious consequences,
from which it is technically not feasible to come back due to blockchain’s immutable design.
For instance, in financial settings involving numerous non-refundable transactions, any errors
could lead to irreversible defective transactions, resulting in significant loss of funds wired
by mistake, while also incurring transaction fees regardless [18]. However, there has been
an exceptional instance, such as with the hack of Decentralized Autonomous Organization
(DAO) [19], an occurrence of a re-entrancy attack1, where Ethereum’s core developers solved
the issue by deploying a hard fork, subsequently creating a new version of the existing chain
[21]. Therefore, it is imperative to carefully test smart contracts before deploying them to the
blockchain.

With the ongoing advancements of the blockchain ecosystem and smart contracts, the em-
phasis on smart contract testing has become increasingly critical, reflecting the growing need
for automated testing methods. Educational programs are responding by incorporating smart
contract testing into their curricula, which enables students to develop a solid understanding
of the field [5]. This approach aims to educate students through unit-tested exercises based
on real-world scenarios, ensuring that students comprehend the importance of implementing
robust smart contracts that can withstand multiple critical tests. It is crucial for students to
learn about the risks of taking certain actions in smart contract development before deploying
them to the blockchain to avoid irreversible scenarios.

1A re-entrancy attack occurs when a primary contract makes a call to an external contract, which then calls back
into the original contract within the same transaction [20].

2

1. Introduction

1.2. Objectives and Purpose of the Thesis

The primary objective of this thesis is the development and implementation of a service,
hereinafter referred to as the testing service, designed to test Solidity smart contract inputs
provided by users, with a particular emphasis on an educational context. The first stage
in the development process is to choose a high-performing test runner framework, which
will support the service and ensure that it is scalable and able to handle several requests
at once without experiencing system faults. The criteria for selecting this framework will
be centered on several key factors: speed, efficiency, ease of deployment (with a particular
focus on deployment as Docker [22] containers), and ongoing maintainability and scalability
throughout the software development lifecycle. While the use of Docker containers is favored
for its enhanced security and convenience, the practicality of implementing Docker within
Docker demands further investigation, and alternatives will be explored should this approach
prove unfeasible.

Upon establishing a solid framework, a service will be developed, leveraging the chosen
high-performing test runner framework. This service will work to provide its users (i.e.,
BBSE students) with insightful performance metrics and test results that will improve the
effectiveness and functional correctness of their implementations of smart contracts. This
service must not only offer a wide range of performance data, but must also do it in a way that
is simple to use and uncomplicated without losing depth or detail. Moreover, safeguarding
the integrity and functionality of the service is crucial. This involves ensuring that the service
remains operational, even in the face of errors in submitted smart contracts, and establishing
preventive measures, such as submission frequency limits and optimal execution durations
for smart contracts. Additionally, considering potential security features and protections
against both intentional and unintentional disruptions, such as smart contracts that may
result in infinite loops, will be vital to maintain the reliability and availability of the service.
In order to design a service that can easily expand to meet the changing needs and demands
of smart contract developers in both professional and educational contexts, this thesis will
examine the many facets of these different elements. It aims to create a service that is not
only secure and efficient but also horizontally scalable.

In summary, the outcome of this thesis will contribute to a comprehensive understanding
of the strengths and weaknesses of various test runner frameworks. Ultimately, the work
aims to develop a secure, efficient, and easily scalable service that provides a streamlined
and effective method for testing smart contracts, thereby enabling users to create reliable and
robust smart contracts.

3

1. Introduction

1.3. Research Questions

In this thesis, the subsequent research questions will be thoroughly addressed through an
exhaustive combination of academic study, practical investigation, and applied work, all
aiming to unveil the complexity of the research topic.

• RQ01: What are the requirements for educational unit testing?

a) What is the core use case?

b) What are exemplary exercises that we would like students to do?

• RQ02: What is the status quo in automated smart contract testing?

a) Are there examples of smart contract testing as a service?

b) Which tools are most commonly used for smart contract testing?

c) How can we characterize those tools in terms of their key features and performance
measurement capabilities?

• RQ03: What do we have to consider regarding security and stability when using a
testing tool in a way that is not entirely intended?

a) How can errors and crashes in the contract execution be handled?

b) What measures do we need to take to prevent accidental or intentional system
overload?

• RQ04: How can a learning platform giving feedback through automated smart contract
unit testing be developed?

a) What considerations need to be made to ensure the service is scalable and expand-
able?

4

1. Introduction

1.4. Core Use Case

The requirements for automated unit testing in an educational setting include assisting
students in evaluating their smart contract implementations through tests provided by the
teaching staff. The intended service is required to get smart contract inputs from the students,
test those inputs, and then provide a set of performance metrics that show how effective the
aforementioned smart contracts are.

The core use case involves students submitting their smart contracts to the provided service,
thereby obtaining comprehensive insights into the performance of their smart contracts,
particularly in an educational and academic context. Anticipated users of this service
encompass both instructors and students, starting with those participating in the BBSE course
at TUM. In this scenario, the instructors are expected to create exercises or projects and
provide materials for projects that include the tests and smart contracts that pass those tests.
Students are then allowed to submit their smart contract inputs; however, to ensure that the
testing remains unbiased, they are not given access to the tests or the smart contracts provided
by the instructors. After submission, the service runs the instructor-provided tests against
the students’ smart contract inputs and then delivers the test execution results, providing
detailed feedback on various aspects of the submitted contracts.

The exemplary exercises, which are intended to increase student involvement, are centred
on the effectiveness and validity of smart contracts. Such exercises encompass a variety
of test cases that explore many aspects of the smart contracts and make use of techniques
like fuzz testing to evaluate the effectiveness and reliability of a student’s smart contract
implementation (see Listing A.1 for an example of a Solidity test case). This approach not
only strengthens the learning experience with practical applications but also promotes an
extensive understanding of smart contract testing among students. In addition, efficiency
is further evaluated by applying predetermined gas limits to the student-submitted smart
contract inputs. Overall, these exercises should be designed to challenge students’ smart
contracts with real-world scenarios, ensuring that the feedback from test execution results is
comprehensive enough to help them improve their smart contracts.

5

1. Introduction

1.5. Structure of the Thesis

In section 1.4, Requirements and Core Use Case, of chapter 1, Introduction, a focused discussion
addresses Research Question RQ01: "What are the requirements for educational unit testing?",
along with its related sub-questions. Particularly, it covers RQ01-a, which examines the core
use case, and RQ01-b, which looks at exemplary exercises suitable for students. The structure
of the subsequent chapters, aiming to answer the remaining research questions, is outlined as
follows:

• In chapter 2, Background, the necessary background to grasp the thesis is established.
This chapter seeks to partially address Research Question RQ02 with a discussion
regarding the status quo in automated smart contract testing. More precisely, it focuses
on RQ02-b, identifying the most frequently used tools in smart contract testing.

• In chapter 3, Related Work, the current research in the field of automated smart contract
testing is examined, further contributing to Research Question RQ02. This chapter also
explores RQ02-a, which inquires about examples of smart contract testing as a service.

• In chapter 4, Methodology, a comprehensive discussion of the methodology is presented,
encompassing the selection criteria for the test runner frameworks and a detailed
explanation of how the testing service is built.

• In chapter 5, Comparative Analysis of Test Runner Frameworks, a comparative analysis of
the test runner frameworks is conducted to identify the best-performing framework.
This analysis seeks to address Research Question RQ02-c, which inquires: "How can the
tools be distinguished by their key features and performance assessment capabilities?"

• In chapter 6, System Design and Implementation, the emphasis is placed on discussing
the system’s design and development, concurrently addressing the educational unit
testing requirements. This chapter aims to provide in-depth insights into RQ04: "How
can a learning platform that provides feedback through automated smart contract unit
testing be developed?", and additionally responds to RQ04-a in section 6.6, assuring
that the service is both scalable and expandable. Moreover, section 6.5 in this chapter
provides insights into RQ03, addressing what considerations are essential for security
and stability when utilizing a testing tool beyond its intended use. Within this context,
RQ03-a and RQ03-b are explored in greater detail, looking at how mistakes and crashes
in contract execution can be managed and determining the necessary precautions to
prevent either intentional or unintentional system overload.

• In chapter 7, Results and Evaluation, the evaluation focuses on the security, stability,
and performance aspects of the developed service to determine if it satisfies the non-
functional requirements.

• In chapter 8, Conclusion and Future Work, the thesis is concluded by summarizing the
major findings and making recommendations for further research.

6

2. Theoretical Background

This chapter provides the background needed to follow the discussions in the subsequent
sections of the thesis, offering a concise overview of the main topics covered in this work.

2.1. Blockchain Technology

Initially, blockchains gained attention for transforming record-keeping through a structure that
chains together blocks of transactions, with each entry becoming permanent and immutable
once added to the chain [1, 2]. In Ethereum, "transaction" refers to the signed data package
containing a message sent from an externally owned account, which is an account managed
by private keys without any associated code, and messages can be dispatched from such
accounts by creating and signing a transaction [11]. Furthermore, the immutable nature of
blockchain, combined with its decentralized and distributed ledger, has not only provided a
secure and transparent method for processing data but also attracted significant attention
from various sectors due to its potential to ensure data integrity [3].

Bitcoin is recognized as the initial application of blockchain, having developed and popu-
larized the decentralized ledger concept, considerably increasing the technology’s popularity
and leading the way for decentralized transactions [9]. It also introduced the first decentral-
ized digital currency, or cryptocurrency, distributing bitcoins via an open-source release of its
peer-to-peer software [2]. The blockchain field has evolved with the introduction of Ethereum,
as previously mentioned, moving towards a decentralized computing paradigm exemplified
by applications known as dApps, which function without centralized control [3].

Dannen (2017) divides blockchain into three parts, stating that "A blockchain can be thought of
as a database that is distributed, or duplicated, across many computers. The innovation represented by
the word blockchain is the specific ability of this network database to reconcile the order of transactions,
even when a few nodes on the network receive transactions in various order. ... What is widely
called a blockchain is really the combination of three technologies, a recipe first concocted by Bitcoin’s
pseudonymous creator." [23], which consists of:

• Peer-to-peer networking: A network topology exemplified by BitTorrent [24] in which
computers connect directly with one another, without the use of a central authority,
hence eliminating a single point of failure [23].

7

2. Theoretical Background

Figure 2.1.: The Functioning of Blockchain Technology (Source: [2])

• Asymmetric cryptography: A secure communication method that allows computers
to send encrypted messages to specific recipients, ensuring the sender’s identity is
publicly verifiable while maintaining the privacy of the message content. In Bitcoin and
Ethereum, this cryptography is employed to create unique credentials for user accounts,
which authorize token transactions [23].

• Cryptographic hashing: A method for creating a distinct and concise "fingerprint"
for each set of data, allowing for the quick comparison of enormous data sets while
maintaining data integrity. Bitcoin and Ethereum use the Merkle tree structure to
store transaction sequences, creating a "fingerprint" that network computers can use to
efficiently accomplish synchronization [23].

This is supplemented by the work of Zhang et al. (2019), who characterize blockchain
technology as a significant advancement in secure computing within a decentralized, open
network system. The authors view it as a data management solution, wherein blockchain
serves as a distributed ledger that systematically organizes transactions into hierarchical
blocks. Further addressing the technology’s security, they explain that blockchain is built and
maintained through a peer-to-peer network that utilizes decentralized cryptography and the
collective computational power of numerous nodes to safeguard its integrity [2].

The operation of blockchain is illustrated in Figure 2.1, demonstrating that a bitcoin transfer
from individual A to B is only concluded and considered legitimate once the transaction’s
block wins approval from other nodes and is formally appended to the blockchain [2].
This consensus is reached through mining, a process where nodes, also known as miners,
validate transactions and collectively agree on their order within the network [23]. Mining is
incentivized by a reward system, where miners are compensated with cryptocurrency, such
as ether (the main internal cryptocurrency of Ethereum) in the Ethereum network, for the
computing power, time, and energy spent during the verification process [23]. One of the
most widely-deployed consensus mechanisms is called Proof of Work (PoW), which was
introduced by Bitcoin and relies on miners using their computational resources to solve
complex problems, thus earning the privilege to append new blocks to the blockchain [25].

8

2. Theoretical Background

Regarding the security of PoW, Gervais et al. (2016) further highlight that PoW’s security
is predicated on the assumption that no single entity can possess over half of the network’s
computational power (i.e., 50%), as this would grant them the ability to control the system by
maintaining the longest chain of blocks [25]. This is of utmost importance for the integrity
of the blockchain and the prevention of centralized control. Although theoretically possible,
in practice, such control is deemed challenging to achieve given the expected difficulty of
acquiring such an extensive amount of computing power within a sufficiently large and active
network [26]. Nevertheless, a real-world incident, known as a 51% attack, occurred in May
2018 when an attacker successfully double-spent approximately $18 million worth of Bitcoin
Gold [27], a cryptocurrency based on Bitcoin’s principles [28].

2.2. Smart Contracts

Ethereum was created to enhance the capabilities of blockchain, introducing a platform where
developers can create smart contracts (self-executing contracts with rules written directly
into code) using Solidity, a Turing-complete language designed specifically for this purpose
[11, 13]. Stored on the blockchain, these smart contracts execute certain actions when the
specified criteria are met, leveraging the blockchain’s immutability and transparency to
facilitate trustful and secure transactions without intermediaries [14, 15]. The widespread
adoption of Solidity as the language of choice for smart contract development confirms its
strength and adaptability, now extending its use to other blockchain platforms as well [16].

Vitalik Buterin, the architect of Ethereum, discusses the crucial difference between Ethereum
and Bitcoin, attributing it to Ethereum’s ability to execute smart contracts via Solidity. Buterin
explains, "As a data structure, it works kind of the same way that Bitcoin works, except the difference
in Ethereum is, it has this built-in programming language." [23].

In the Ethereum White Paper, Buterin (2014) describes Bitcoin’s scripting as an early form
of the concept of smart contracts, upon which Ethereum’s framework builds and improves.
Additionally, Buterin addresses Ethereum’s solution to the lack of Turing-completeness of
Bitcoin’s scripting, which omits loop constructs to prevent infinite loops during transaction
verification. The author mentions that while script programmers could theoretically replicate
loops using multiple if statements, this results in highly space-inefficient scripts. Further,
Buterin articulates Ethereum’s vision to combine and refine the concepts of Bitcoin’s scripting,
thereby enabling the creation of various consensus-driven applications that offer scalability,
standardization, comprehensive features, ease of development, and interconnectivity. Finally,
Buterin states that this is achieved by establishing an abstract foundational layer: a blockchain
with a Turing-complete programming language that allows anyone to create smart contracts
and dApps with specific rules for ownership, transaction formats, and state transitions. The
author concludes by how the Ethereum platform enables the creation of smart contracts,
which are cryptographic containers that contain value and release it only when certain
conditions are met [11].

9

2. Theoretical Background

Ethereum Virtual Machine (EVM). Smart contracts on Ethereum are executed by the EVM, a
single, global 256-bit "computer"1. The EVM operates using its own language, known as the
EVM bytecode, which high-level languages like Solidity are compiled into and then deployed
on the blockchain for execution. Each action on the EVM is assigned a specific gas cost [23].

Gas as a Unit of Work. Dannen (2017) describes gas in Ethereum as a unit of work, which
quantifies the computational effort required for operations and transactions2. The author
mentions that the gas system serves two primary purposes: First, it provides miners with a
prepaid incentive to execute code and maintain network security, even if the execution fails.
Second, it prevents operations from exceeding their assigned computation time, addressing
the halting problem3. Dannen further highlights the significance of gas pricing in ensuring that
computational time on the network is correctly valued, with costs paid in small amounts of
ether. Furthermore, the author contrasts Ethereum with Bitcoin, where fees are calculated
based on transaction size in kilobytes, whereas in Ethereum’s EVM, fees depend on the
computational work involved, not the size of the transaction. This pricing model accounts for
the varying complexity of Solidity code, where length does not always correspond to either
complexity or required computational effort [23].

2.2.1. Solidity Programming Language

Dannen (2017) simply defines smart contracts as "Smart contracts are often equated to software
applications, but this a reductive analogy; they’re more like the concept of classes in conventional
object-oriented programming. When developers speak of writing smart contracts, they are typically
referring to the practice of writing code in the Solidity language to be executed on the Ethereum
network. When the code is executed, units of value may be transferred as easily as data." [23].

Drawing from the research of Wöhrer and Zdun (2018), Solidity emerges as a high-level,
Turing-complete programming language, bearing a resemblance to JavaScript in its syntax. It
is characterized by static typing and supports programming features such as inheritance and
polymorphism. Furthermore, it allows for the use of libraries and the creation of complex user-
defined types. In the context of contract development, Solidity treats contracts similarly to
classes in object-oriented languages, with contract code consisting of variables and functions
that interact with these variables, similar to traditional imperative programming [31].

Expanding further, Buterin (2014) outlines the fundamental structure of the Ethereum state,
which comprises unique "accounts," each identified by a 20-byte address. These accounts
transition between states by exchanging value and information, facilitated by the EVM as it
processes the instructions in contract code [11].

Solidity contracts, therefore, have access to transaction details such as value, sender, and
data, as well as metadata contained in block headers [23]. Access to these details enables

1The EVM is not a physical computer but a virtual computation engine for Ethereum, maintaining the
blockchain’s state and facilitating the operation of smart contracts [29].

2The total fee incurred by a transaction is calculated by multiplying the total amount of gas used by the price
paid for the gas [23].

3The halting problem is a concept in computer science that refers to the difficulty of determining whether a
program will eventually stop or continue to execute indefinitely in a loop [30].

10

2. Theoretical Background

the development and implementation of a wide range of rules on the blockchain, taking
advantage of Solidity’s powerful capabilities to enforce logic inside the Ethereum ecosystem.

As an example, the code listing provided in Listing 2.1 below, sourced from Wöhrer
and Zdun (2018), presents a basic Solidity smart contract designed for handling deposits,
withdrawals, and balance inquiries. An initial examination reveals a syntax that closely
resembles that of JavaScript [31].

1 pragma solidity ^0.4.17;
2

3 contract SimpleDeposit {
4

5 mapping (address => uint) balances;
6

7 event LogDepositMade(address from, uint amount);
8

9 modifier minAmount(uint amount) {
10 require(msg.value >= amount);
11 _;
12 }
13

14 function deposit() public payable minAmount(1 ether) {
15 balances[msg.sender] += msg.value;
16 LogDepositMade(msg.sender, msg.value);
17 }
18

19 function getBalance() public view returns (uint balance) {
20 return balances[msg.sender];
21 }
22

23 function withdraw(uint amount) public {
24 if (balances[msg.sender] >= amount) {
25 balances[msg.sender] -= amount;
26 msg.sender.transfer(amount);
27 }
28 }
29 }

Listing 2.1: A contract to deposit/withdraw funds and verify account balances (Source: [31])

To examine the syntax, a contract first declares the version of the Solidity compiler to be
used (Line 1), and then utilizes the contract keyword, similar to a class in object-oriented
programming, to define the structure of the contract (Line 3).

Contracts usually utilize the Solidity language’s mapping structure (Line 5) to link Ethereum
addresses with their respective balance values, reflecting a key-value pair akin to dictionaries
in many other programming languages.

Functions within the contract, denoted by the function keyword (Lines 14, 19, and 23),
contain the logic to interact with the contract’s state [31]. They are declared with modifiers
that define their behavior and access levels. For instance, public sets the accessibility of the

11

2. Theoretical Background

function, allowing external calls to it, view indicates that the function will not modify the
state, and payable enables the function to accept ether , which is necessary for functions
that access the value of the message (Line 14). Additionally, the returns keyword, followed
by a type, is used to specify the return type of a function, as illustrated in the getBalance
function (Line 19).

A convenient feature in Solidity is the custom modifiers. These code constructs alter the
execution flow of functions by encapsulating conditional checks and are invoked through
a list appended to the function’s name, with the original function body inserted where the
modifier indicates with an underscore, " _ " (Line 9) [31]. For instance, incorporating the
minAmount modifier to the deposit function mandates that callers must have a balance of

at least the specified ether to invoke the function, which is 1 ether in Listing 2.1 (Line 14).
Solidity also provides special variables, such as msg.sender and msg.value , which

contain information about the caller and the value transferred, respectively, and are used
within functions to implement certain rules and logic.

Events in Solidity, such as LogDepositMade (Line 7), are a valuable feature that allow smart
contracts to emit signals, which can be monitored by user interfaces and applications at
minimal cost for responsive actions, and also serve as logs by storing their arguments in the
transaction’s log within the blockchain, accessible externally due to their association with the
contract’s address [31]. For example, the event named LogDepositMade is declared in Line 7
and subsequently triggered in Line 16.

Finally, beyond the constructs depicted in Listing 2.1, error handling is implemented either
through the require keyword, which enforces that specified conditions are satisfied, or the
revert keyword, which throws an error and aborts the transaction.

2.2.2. Smart Contract Testing

Ethereum dApps make use of smart contracts to harness the Ethereum blockchain’s processing
and storage capabilities for carrying out their core functions [3]. These smart contracts can be
deployed and tested using what are commonly known as test runner frameworks, details of
which are provided in the following section. It is vital to conduct rigorous testing of smart
contracts to ensure their functionality and security since, after deployment, they become
immutable; this immutability makes any errors permanent and could lead to significant
consequences [17]. This highlights the necessity of testing before blockchain deployment.

Integration Testing vs. Unit Testing. As highlighted in a recent study [32], smart contracts
frequently rely on the functionality of other interconnected contracts, with the complexity
and unpredictability of behaviors increasing as the network expands. The study also notes
that the blockchain is considered a self-contained system where smart contracts are limited
to interacting with data already on the chain. The authors further point out that since all
contracts on the blockchain interact through a shared "World State" [32], their testing aligns
more closely with integration testing, which examines the overall functionality, as opposed to
unit testing, which isolates and analyzes individual components [32].

12

2. Theoretical Background

Further Importance of Testing and Challenges. A study by Zou et al. (2019) identifies the
deployment of secure and error-free code as the primary concern among industry profes-
sionals involved in blockchain development [33]. Barboni et al. (2022) state that ensuring
the reliability of code for smart contracts is of paramount importance. The authors outline
several key attributes that underscore the vital nature of smart contract testing [32]:

• High stakes: Smart contracts carry significant risks due to their management of valuable
assets, such as financial resources and sensitive data, and untested contracts can result
in unpredictable behavior on the blockchain, leading to financial losses or malicious
exploitation [32].

• Immutability: Due to the nature of the blockchain as a decentralized and immutable
record system, any unwanted transactions performed during contract execution are
irreversible, leaving users with no option to obtain a refund unless the original recipient
issues a new transaction to return the assets [32].

• Lack of standardized best practices for smart contract design and development:
Barboni et al. (2022) note the difficulty in developing high-quality smart contract
code, attributing it to a lack of established best practices, standards, and guidance in
the development process. They also observe that while smart contract development
has advanced in the recent years, there remains an absence of thorough guidance for
developers on how to create reliable smart contract code, especially when contrasted
with traditional software [32]. Additionally, Pierro et al. (2020) examine how the
similarity in syntax between traditional languages such as JavaScript and smart contract-
specific languages like Solidity can lead blockchain software developers to a false sense
of security [34].

2.2.3. Test Runner Frameworks

A study by Palechor et al. (2022) observes that there are a few open-source platforms
available, such as Truffle [35] and Hardhat [36], that aid in the development and testing of
smart contracts for developing high-quality smart contract [37]. As previously introduced in
section 1.1, these platforms are known as the test runner frameworks.

Palechor et al. (2022) also highlight the deficiency in testing support for smart contracts
relative to the established frameworks available for traditional applications. Nonetheless,
their detailed examination of several test runner frameworks identifies the most often used
ones, offering light on the practical testing methodologies used by developers. The study
reveals that Truffle is the framework of choice for half of the listed projects, making it the
most popular. Further discussion in their work covers Hardhat and DappTools [38], which
rank as the next frequently used tools for smart contract testing. The study also details less
commonly used tools in the domain, such as Manticore, Embark, and Solgraph [37].

A recent blog post [39] offers a comparison of the top three test runner frameworks, which
are Hardhat, Truffle, and Foundry [40]. The blog post highlights Foundry as an emerging
star with lightning-fast testing speeds. Foundry is a framework that is a thorough rewrite of

13

2. Theoretical Background

the DappTools testing framework, an innovation made possible by the foundational work of
the DappHub team who developed DappTools [41].

In summary, test runner frameworks facilitate the development and testing of smart
contracts, with the latter being the focal point in this thesis. Truffle, Hardhat, and Foundry
have been identified as the most commonly used frameworks for smart contract testing.
Further in this work, these three frameworks will be compared to determine the most suitable
one to be used in the final testing service.

2.3. Containerization

Before discussing the concept of containerization, one must mention virtualization, the
precursor to containerization. In a past study by Chiueh et al. (2005), the concept of Virtual
Machines (VMs) was examined, tracing back to the 1960s. The authors highlighted that it
was first developed by IBM to enable multiple users to interact with a mainframe computer
simultaneously. They also noted how a VM acted as a replica of the physical computer and
gave users the impression that they were using the actual hardware. This method was a
smart, seamless, and transparent way to facilitate time-sharing and resource-sharing on costly
equipment. Moreover, the authors described each VM as a secure and independent version
of the main system, where users could execute, develop, and test software without the risk
of affecting the systems of other mainframe users. Therefore, virtualization was a technique
introduced to reduce hardware costs and increase productivity by allowing a larger number
of users to share resources [42]. The authors continue their exploration by examining the
practical applications of virtualization, outlining the following essential scenarios [42] that
may aid in understanding the concept of containerization within this thesis:

• Sandboxing: The authors describe the use of VMs to create secure, isolated environ-
ments, or sandboxes, for the execution of potentially unsafe or unverified applications,
hence contributing to the development of secure computing environments.

• Multiple Execution Environments: The paper elaborates on how virtualization allows
for the establishment of multiple execution environments, which can improve service
quality by ensuring dedicated resources.

• Multiple Simultaneous Operating Systems: The paper points out that virtualization
technology enables the use of several Operating Systems (OSs) at once, accommodating
a variety of applications to run concurrently.

• Debugging: The authors suggest that virtualization can be a valuable tool for debugging
complicated software by letting the user execute them on a simulated system with full
control over the software.

• Software Migration: In the paper, virtualization is highlighted as a facilitator for the
migration of software, which assists in the mobility of software applications.

14

2. Theoretical Background

Table 2.1.: Comparison between VMs and Containers
Parameter VMs Containers
Guest OS Each VM runs on virtual hardware,

and the kernel is loaded into its own
memory region.

All the guests share the same OS
and kernel. The kernel image is
loaded into the physical memory.

Communication Communication is through Ethernet
devices.

Mechanisms like signals, pipes,
sockets, etc., are used.

Security It depends on the implementation
of the hypervisor.

Mandatory access control can be
leveraged.

Performance VMs suffer from a small overhead
as the machine instructions are
translated from guest to host OS.

Containers provide near-native per-
formance compared to the underly-
ing host OS.

Isolation Sharing libraries, files, and other
resources between guests and be-
tween guests and hosts is not possi-
ble.

Subdirectories can be transparently
mounted and shared.

Startup Time VMs take a few minutes to boot up. Containers can be booted up in a
few seconds, in contrast to VMs.

Storage VMs require much more storage as
the entire OS kernel and its associ-
ated programs have to be installed
and run.

Containers require a lower amount
of storage as the base OS is shared.

Source: [45]

• Appliances: The authors mention how an application with its required operating
environment can be packaged into a single deployable unit.

• Testing/QA: The paper underscores the role of virtualization in generating arbitrary
test cases that might be challenging to produce in reality, thereby aiding in the software
testing process.

Containerization, on the other hand, is a virtualization solution that delivers all the scenarios
mentioned above with a lightweight portable runtime. It provides the ability to develop,
test, and deploy applications from a single host to cluster of containers4 [44]. This approach
allows a swift and straightforward process of porting applications to different machines
and environments, thereby increasing development speed and application scalability [22].
Furthermore, containerization ensures application isolation from the host and encapsulates
only the necessary components required for the application to function.

In their study, Dua et al. (2014) investigate how containerization differs from traditional
virtualization, evaluating factors such as performance, isolation, security, networking, and
storage. They explain that a container within a containerized environment operates as a
lightweight OS within the host system, executing instructions directly on the core CPU,
thereby eliminating the necessity for instruction-level emulation or just-in-time compilation.

4A container bundles an application’s code together with the required libraries and dependencies [43].

15

2. Theoretical Background

Figure 2.2.: The Client-server Architecture of Docker (Source: [46])

In Table 2.1, sourced from their paper, it is evident that containers can match VMs in
providing a secure and isolated environment but with significantly faster boot times, often
just a few seconds. They facilitate a reduction in resource usage by avoiding the typical
overhead associated with virtualization while still offering isolation. In comparison to VMs,
containers also use less storage because they share the underlying OS. Furthermore, they
allow subdirectories to be shared, a feature not available with VMs [45].

2.3.1. Docker

There are several tools available that effectively facilitate containerization. Among these
tools, Docker, a well-established containerization solution, has been a popular choice among
developers in the DevOps ecosystem [47]. This open-source technology allows developers to
build, ship, and run distributed applications [22]. Its adoption by companies such as Spotify,
Yelp, and eBay attests to its widespread popularity [48]. Moreover, Docker can deploy more
virtual environments on the same hardware compared to other tools [49]. It offers extensive
community support with a wide range of materials and guides online, making it the chosen
tool for containerization in this work. Docker’s comprehensive library of pre-built images
available on Docker Hub [50] simplifies the process of pulling and working with existing
Docker images. For instance, in this project, most of the images will be based on the latest
Ubuntu image from the Docker registries.

In a study focusing on Docker’s security, Bui (2015) highlights Docker’s unique approach
among various frameworks, which includes offering straightforward interfaces for the secure
creation and management of containers. Additionally, Docker encapsulates applications
within lightweight containers that can operate across diverse environments with little to no
changes needed [48].

16

2. Theoretical Background

Docker Engine. Bui (2015) describes the Docker Engine as a portable tool for packaging that
uses container-based virtualization5. The author explains that the Docker daemon is responsible
for the operation and management of Docker containers. In addition, the Docker client
presents an interface for users to interact with the containers, processes user commands,
and forwards them to the Docker daemon via the REST API. Bui (2015) also emphasizes
that this communication approach allows the Docker client to operate either on the same
host as the containers or on separate hosts [48]. Furthermore, communication between the
Docker client and the Docker daemon can occur over UNIX sockets or a network interface
[46]. The client-server architecture of Docker, which illustrates how the client interacts with
the daemon, is depicted in Figure 2.2.

Docker Image & Container. A Docker image is constructed from a base layer, such as an
Ubuntu base image, and builds up additional layers with user changes, such as installing
MySQL [48]. The build process is optimized through caching, which rebuilds only the
changed layers. This process is directed by a special file, a Dockerfile, which contains sequential
instructions to build the Docker image (see Figure C.1 for a sample Dockerfile). Moreover,
when Docker images are executed, they create Docker containers, which are stand-alone
environments generated by running a specific command on the images.

Docker Hub. Docker Hub is a Software as a Service (SaaS) platform and a centralized
repository where users can distribute their custom images, search for and download existing
ones using the Docker client, while relying on the authenticity and integrity of the images,
which is assured by Docker’s verification process at the time of submission [48].

Docker Compose. The official documentation of Docker Compose [51] defines it as an
essential tool for defining and running multi-container Docker applications. The tool uses a
YAML file for service configuration and a single command to start all services. It is adaptable
and offers extensive management capabilities for the application lifecycle. Its usefulness
originates from its ability to run multiple isolated environments on the same host, preserve
volume data upon container creation, and selectively recreate only the changed containers,
among other capabilities [51].

5Container-based virtualization is a lightweight virtualization approach that utilizes the host’s kernel to operate
multiple virtual environments, commonly known as containers [48].

17

3. Related Work

Before initiating the development process, it is essential to clearly define the requirements and
the problem at hand. This section provides a brief review of related work and examines any
previous endeavors similar to the automated smart contract testing service developed in this
thesis, which is primarily focused on educational applications. Ultimately, a combination of
scientific and pragmatic research will be used to explore several strategies for implementing
such a modular service for smart contract testing.

Examples of Student Submission Systems in Educational Contexts. The core application of the
final testing service in this thesis is centered on an educational context. Hence, investigating
existing student submission methods is critical for the investigation of related works. Artemis
[52] at TUM, an open-source interactive learning platform that delivers individualized feed-
back to students, is a prominent example of such a system. Artemis enhances the learning
experience by providing programming exercises in which students use version control systems
and obtain automated evaluations through test cases connected with continuous integration
tools. The platform allows students to submit their solutions numerous times before the
deadline, enabling them to refine their work using the feedback provided [52]. This iterative
submission and feedback process is aligned with the key functionalities anticipated for the
final testing service. Furthermore, the Parallel Programming course [53] at TUM features a
dedicated submission system through which students can upload their exercise solutions.
This system utilizes tools to manage scalability and employs message queuing1 to effectively
handle the concurrent load from multiple student submissions. Such technologies could
also be integrated into the final testing service to enhance its scalability, stability, and overall
performance.

Status Quo in Smart Contract Testing. This paragraph focuses on automated smart contract
testing and its usefulness in understanding the current state of the field. Driessen et al. (2021)
investigate automated unit testing on the Ethereum blockchain for Solidity smart contracts.
They observe that current testing methods are mainly focused on detecting vulnerabilities
within smart contracts and the blockchain through basic strategies such as fuzzing. While
recognizing the importance of vulnerability detection, the authors argue that having access
to a good test suite may be even more beneficial. They introduce an automated system for
generating test cases for smart contracts, which creates scenarios involving transactions from
different accounts to test sender-dependent functionality [55]. Adding to the conversation
on vulnerability detection, Mi et al. (2023) emphasize its significance as a critical research

1Message queuing facilitates inter-application communication by transferring data through queues that are
processed in sequence [54].

18

3. Related Work

problem and propose an automated framework for detecting vulnerabilities that employs a
metric learning-based neural network [56]. Moreover, Benabbou et al. (2021) also stress the
importance of testing smart contracts, emphasizing that bug-free smart contracts improve
both the reliability and cost-effectiveness of these contracts. They categorize current testing
solutions into categories, examining and contrasting their advantages and disadvantages
[57]. Barboni et al. (2022) point out that the current state of smart contract testing is lacking
a consistent set of guidelines, best practices, and platform-independent tools for testing.
These authors also mention the absence of applied and cost-effective techniques to assess the
adequacy of tests [32]. Finally, according to Palechor et al. (2022), functional testing is the
most commonly used methodology for smart contract testing, followed by security testing.
They also point out the absence of traditional performance assessment in the field, such
as execution time measurements. Instead, they discovered that a large majority of projects
measure performance through gas usage [37].

Existing Analyses on Test Runner Frameworks. In this thesis, the initial step is comparing
widely-used test runner frameworks, specifically Truffle, Hardhat, and Foundry, to determine
the most suitable one for the final testing service. A review of prior comparative analyses on
these frameworks is crucial. Palechor et al. (2022) conduct a comparative analysis of various
test runner frameworks by examining numerous open-source smart contract projects coded in
Solidity. They investigate the state of smart contract testing from the perspective of developers
and the test runner frameworks used by them [37]. Furthermore, several blog posts provide
in-depth discussions on various frameworks. For instance, a blog post by Celo Academy
[58] provides a detailed comparison of Truffle and Hardhat, highlighting the significance of
selecting the appropriate framework based on specific project requirements and outlining their
unique strengths and weaknesses. It also presents use cases and considerations for selecting
either framework based on their distinct features. Additionally, another blog post [59]
explores the differences between Hardhat and Foundry, focusing on aspects such as developer
experience and performance. It describes unique features including Foundry’s cheatcodes,
which provide developers with expanded testing options such as changing block numbers
and accounts. The post also compares the performance of both frameworks and finishes with
a discussion of their advantages and disadvantages. In conclusion, the approaches used in
the aforementioned studies will be useful for this work in comparing various test runner
frameworks since understanding the details of these comparisons is crucial for identifying
the best effective evaluation strategy.

Examples of Automated Smart Contract Testing as a Service. The testing service developed
in this thesis is presented as a software package that provides automated testing of smart
contracts. To our knowledge, there is not a service that tests smart contracts using provided
test cases, but there are similar works. DefectChecker [60], proposed by Chen et al. (2021),
examines bytecodes to find defects in smart contracts. Although it employs bytecode analysis
rather than test runner frameworks, DefectChecker is still considered related work due to its
automated testing capabilities. Li et al. (2019) introduced MuSC [61], a mutation testing
tool for evaluating test adequacy in Ethereum smart contracts, which is relevant in this

19

3. Related Work

discussion for supporting smart conract testing on user-defined testnets2. Moreover, industry
examples of automated smart contract testing services bear a closer resemblance to the service
developed in this thesis. ConsenSys Diligence [63], for instance, provides enterprise-level
smart contract testing, utilizing its robust fuzzer with millions of transactions for stress
testing3 to find bugs and vulnerabilities before they are exploited. It also comes with several
open-source tools to perform vulnerability detection and security analysis for EVM bytecode,
delivering comprehensive reports [63]. Similarly, Suffescom Solutions [65] delivers several
smart contract testing services, offering automated tools to assure the dependability, security,
and performance of blockchain systems. They provide end-to-end testing for smart contracts
that involve many transactions in the blockchain ecosystem. They use testing methods
such as functionality, security, and automation testing, with the latter utilizing popular
tools such as Truffle. These enable businesses to create error-free and secure blockchain
applications or dApps. Furthermore, these services perform smart contract penetration
testing to identify potential security weaknesses by mimicking real-world attack scenarios [65].
Lastly, open-source tools like Etheno [66] provide differential tests that check for discrepancies
between implementations, such as gas consumption differences, which could be a valuable
performance metric later in this thesis.

Example Docker Containerization Use Cases. In this work, Docker is employed to containerize
the final testing service and its associated microservices. This section examines Docker’s
application in various domains. Chung et al. (2016) utilized Docker containers for deploying
High Performance Computing (HPC) applications to evaluate performance between VMs
and containers [67]. Additionally, Bonacorsi et al. (2016) describe the popularity of Docker
as the leading standard for container-based virtualization, highlighting its adoption by
major IT providers such as Spotify for continuous delivery, service testing, and deployment.
They also encapsulated several Content Management System (CMS) applications in Docker
containers and found that Docker offers several options for deploying and benchmarking
large-scale projects without compromising performance [68]. A paper by Naik et al. (2016)
provides a simulated creation of a virtual system of systems, which enables distributed
software development across several cloud platforms using Docker Swarm, which broadens
the scope of Docker’s container-based software development to span across multiple hosts
and clouds [69]. Furthermore, Jansen et al. (2016) illustrate the use of Docker Swarm [70] for
distributed computing across multiple nodes, handling the substantial data volumes common
in biomedical analysis, like imaging and biosignal processing. Their work emphasises Docker
Swarm’s efficiency in data-intensive jobs by giving a case study that employs machine learning
to analyze biosignal features, all while avoiding data transfer bottlenecks [71].

2Testnets allow developers to deploy and interact with smart contracts without incurring the gas fee [62].
3Stress testing is a software testing technique that pushes the software to its boundaries [64].

20

4. Methodology

This chapter describes the approach that will be used throughout this thesis, providing
an in-depth description of the process of selecting the optimal test runner framework and
building the final testing service.

4.1. Test Runner Framework Evaluation and Selection

Before implementing the end service, the first step will be to compare various test runner
frameworks to explore their convenience for automated smart contract testing. The most
widespread ones, chosen as candidates in this work, include Truffle, Hardhat, and Foundry.
Through this analysis, the strengths and limitations of each test runner framework will be
assessed to provide valuable insights into their effectiveness and suitability for the core use
case. In-depth evaluations of their documentation, community support, and extensibility will
also be conducted to determine not just their current capabilities but also their potential for
future adaptations and troubleshooting.

The final evaluation criteria for the frameworks will encompass speed, efficiency, ease
of deployment as Docker containers, and manageability throughout the entire software
development process, aiming to ensure that the developed service remains easily maintainable
and scalable. Furthermore, the candidate test runner frameworks will be set up and tested
locally by writing a common test case in compatible formats that each of them understands
or different test cases for different frameworks. This stage will incorporate a meticulous
analysis of the error messages and logs generated during the test runs, enabling a deeper
understanding of each framework’s debugging and problem-resolution capabilities.

Only after all of the frameworks have been configured to run in the local environment will
methods for deploying them as Docker containers be investigated, as Docker is the chosen
containerization solution. To assess the practicality and performance of each framework when
containerized, an in-depth analysis will be conducted, taking into account factors such as
container size, startup time, and resource utilization. Once everything is set, each framework
will be benchmarked locally to determine which one is the most promising, ensuring that the
chosen one not only excels in performance but also in robustness, documentation quality, and
community support, thereby confirming its position as a sustainable and reliable preference
for the upcoming service implementation.

21

4. Methodology

4.2. Design and Appraisal of the Final Testing Service

After selecting the most suitable test runner framework for smart contract testing based on
usability, development experience, features, performance, and containerization capabilities,
a final testing service will be designed and developed. This service will utilize Docker
containers to manage a workflow that processes user inputs to build and execute Docker
images, and subsequently removes the containers upon completion of their use. Furthermore,
the service will encompass multiple Dockerized microservices or applications, implemented
in TypeScript with Node.js. TypeScript, preferred over JavaScript, is chosen for its strict typing
system, which is believed to enhance code maintainability [72]. The design will emphasize
stability, security, performance, and scalability to ensure that the service’s requirements are
met. Additionally, the service should also provide high maintainability, facilitating the easy
integration of new features and updates.

• The core worker service, hereafter referred to as the test runner service, will manage
the creation of Docker images that will contain the submitted project. Executing these
images with smart contract inputs will allow testing those smart contracts against the
tests uploaded with the projects and return the results. It is worth noting that this
worker service will use the host machine’s Docker daemon to avoid executing Docker
within Docker, which would have resulted in performance concerns.

• The backend services will function as a user gateway. Utilizing REST APIs, it will acquire
input from users and provide it to the test runner service, either for the construction
of Docker images for projects or the execution of Docker containers for testing smart
contracts. This service will be responsible for managing user authentication and
authorization, securely storing users in the database via the use of JSON Web Token
(JWT) tokens. Furthermore, the database will include information about the projects
and smart contract submissions, as well as the uploaded files for each of them, making
them available for download on demand.

• To facilitate user engagement with the system, a frontend application will be developed.
This application, which only has access to the backend service, will validate that the
functionalities of the thesis work as expected.

4.2.1. Simultaneous Submission Management

The service should accommodate a load of approximately 200-300 developers, the majority
of whom are expected to submit their contracts during peak times. In the core use case,
for instance, students are required to submit their contracts before a pre-defined deadline.
It is anticipated that most submissions will occur during the final hours leading up to the
deadline. Consequently, the service should be fortified to manage this demand. In order to
facilitate this, the incorporation of a message queueing mechanism, such as RabbitMQ [73], is
anticipated to systematically regulate the flow of requests. Depending on server capacity, this
queue will modulate the load, executing contracts in small batches.

22

4. Methodology

Furthermore, instead of backend services sending requests to REST APIs of the test runner
service, an architecture will be designed in which both services are oblivious of each other’s
existence, interacting instead via RabbitMQ. Backend services will send messages to the
queue, which will subsequently be consumed by the test runner service.

4.2.2. Service Security and Stability

Ensuring the integrity of the service against all submitted code is essential. The service
must identify and handle errors in submitted smart contracts, including those that cannot be
compiled. Additionally, utilizing gas limits, establishing submission frequency limits, and
setting runtime durations for smart contracts could facilitate control over code submissions.
This is critical, especially when dealing with code submissions that either become trapped in
an infinite loop or take an inordinate amount of time to complete.

4.2.3. Scalability and Service Distribution

The service must also be designed with horizontal scalability in mind to handle potential
future increases in user volume. This versatility is expected to be aided by the incorporation of
Docker Swarm to automatically distribute containers across the cluster, enabling the service to
scale up or down as necessary. To realize this, the entirety of the service must be constructed
with consideration for its potential to operate independently in the future.

4.2.4. Efficiency and Performance Analysis

The ultimate evaluation of the proposed solution necessitates an assessment of its efficiency
in addressing the aforementioned problems. The message queue should enable the service to
manage a substantial workload without failures, deliver accurate test results, and maintain
high availability. Conclusively, the development of a straightforward frontend application
that employs this service will serve as an exemplary means to demonstrate and test that the
service is functioning as anticipated. The findings and results will be used in the thesis to
show that the built service is useful, powerful, and reliable for users and instructors.

23

5. Comparative Analysis of Test Runner
Frameworks

This chapter presents a comprehensive comparative analysis of several test runner frameworks,
namely Truffle, Hardhat, and Foundry. It assesses their usability, development experience,
feature sets, reporting mechanisms for resulting metrics, performance, and containerization
capabilities. Based on this analysis, the chapter concludes with the selection of the most
suitable framework, which is to be used for smart contract testing in the final testing service.

5.1. Overview of Test Runner Frameworks

In this section, a brief introduction to each of the test runner frameworks will be presented,
explaining their respective purposes and significance in the context of smart contract develop-
ment and testing.

5.1.1. Truffle

Truffle is one of the most widely used test runner frameworks among Ethereum developers,
with over 1.5 million lifetime downloads [74]. Developers commonly employ the Truffle frame-
work to test Ethereum smart contracts, using JavaScript to write tests that can effectively inter-
act with the contracts on test networks or the main Ethereum network [75]. The framework pro-
vides certain abstractions, enabling easy interaction with smart contracts as JavaScript classes
or objects. For instance, in the code snippet let balance = await instance.getBalance() ,
the smart contract’s balance can be retrieved effortlessly. Additionally, Truffle uses Node
Package Manager (npm) for managing and installing dependencies.

Furthermore, Truffle incorporates an integrated debugger similar to most command line
debuggers. This debugger enables smooth debugging of transactions made against the smart
contracts, adding to the convenience and usability of the framework [76].

Moreover, to set up the local blockchain, another tool called Ganache [77] is used. It is an
Ethereum simulator that serves as a local in-memory blockchain for development and testing
purposes, simulating key features of an actual Ethereum network and providing users with a
range of accounts funded with test Ether [78].

In this thesis work, the focus is on testing smart contracts rather than deploying them on a
local blockchain separately and working on them. Running $ truffle test automatically sets
up Ganache as a local test instance, facilitating contract deployment during test time. This
will ease the testing of the smart contract project and further simplify the containerization
process as a single command simply takes care of the whole testing pipeline.

24

5. Comparative Analysis of Test Runner Frameworks

Last but not least, Truffle is not only very popular among many developers but also benefits
from great community support, which allows for an effortless resolution of issues or bugs.

5.1.2. Hardhat

Hardhat is a relatively newer development environment for Ethereum software compared to
Truffle, but it has quickly gained popularity in the smart contract development community. It
offers a comprehensive suite of tools for editing, compiling, debugging, and deploying smart
contracts and dApps, creating a complete development environment [79]. Furthermore, it
operates through scripts, functioning as a task runner that allows for the automation of the
development workflow.

One of the key selling points of Hardhat is its improved speed in comparison to Truffle,
especially during the testing phase. Compared to Truffle, Hardhat provides enhanced
flexibility in smart contract development, offering faster testing processes by leveraging best
practices as outlined in the Hardhat documentation [79, 80]. Similar to Truffle, the tests are
also written with JavaScript and it offers the flexibility to replicate all the functionalities
provided by Truffle. Additionally, dependency management in Hardhat is carried out via npm.
An added advantage is the incorporation of the Hardhat Chai Matchers [81], which enhances
the readability of smart contract tests by introducing Ethereum-specific capabilities to the
Chai assertion library. For example, developers can use this plugin to assert that a specific
event is fired by a contract or that a contract reverts with a specific message. Additionally,
Hardhat provides easy ways to track specific changes to a wallet’s Ether or token balance
resulting from a transaction [79]. With Hardhat, developers can use console.log instead of
a debugger, offering a convenient and straightforward way to resolve bugs. However, one
drawback of Hardhat is the absence of address management, requiring more effort to interact
with a specific contract in tests compared to Truffle, as it demands hard-coded addresses in
the code.

While Truffle relies on Ganache, Hardhat employs its own node, the built-in Hardhat
Network, to set up the local blockchain. This local Ethereum network node possesses similar
functionalities to Truffle’s Ganache, enabling the deployment, testing, and debugging of smart
contracts.

Hardhat utilizes Ethers.js [82] as the default library, in contrast to Truffle Suite which
defaults to Web3.js [83]; however, developers also have the flexibility to use Web3.js as the
default library in Hardhat. Additionally, it is worth noting that Web3.js is the older library,
while Ethers.js is a newer one with a more user-friendly syntax and extensive documentation.
Furthermore, since Web3.js is written in node.js and Ethers.js is in TypeScript, Ethers.js has a
comparatively smaller bundle size compared to Web3.js [84].

Typescript, offering a statically typed experience for JavaScript development, ensures
strong typing and enhanced code integrity during development [85]. By utilizing TypeScript,
developers can easily incorporate custom functionality into their programs and effortlessly
integrate external tools, enabling the creation of highly extensible projects when working
with Hardhat.

25

5. Comparative Analysis of Test Runner Frameworks

Figure 5.1.: Forge (Foundry) vs. Hardhat - Compilation of uniswap/v3-core (Source: [41])

5.1.3. Foundry

Foundry, a newer test runner framework compared to Truffle and Hardhat, has gained
significant attention in the smart contract development community due to its promise of
being considerably faster [39]. Written in Rust, Foundry has demonstrated remarkable
speed in its performance [41]. According to the information available on Foundry’s GitHub
repository [41], the framework outperforms DappTools, another test runner framework
on which Foundry is built, with an impressive speedup of up to 140x, and consistently
compiles faster than Hardhat by a factor of 1.7-11.3x (see Figure 5.1). Furthermore, Foundry’s
portability, with a compact size of just 5-10MB, and its straightforward installation process
that does not require any package manager contribute to its overall appeal [41].

Foundry’s architecture differs slightly from that of Truffle and Hardhat. Notably, the
dependency management is done via git submodules instead of npm packages, potentially
making it more lightweight. Moreover, the tests are all written in Solidity, a departure
from JavaScript, and similar to Hardhat, it permits the use of console.log for simplified
debugging. The choice of Solidity for tests offers several advantages, such as eliminating
the need for conversions like BigNumber and bypassing the requirement for an Application
Binary Interface (ABI) for contract interaction. Having the tests in Solidity simplifies the
technical stack of the project, as it eliminates the need to include any other language apart
from Solidity. Additionally, the use of the EVM implementation in Foundry proves to be
highly convenient for testing purposes.

Forge, a command-line tool bundled with Foundry, facilitates testing, building, and deploy-
ing smart contracts. It offers advanced testing methods, including Fuzz Testing, Invariant
Testing, Differential Testing, and eventually Symbolic Execution and Mutation Testing. Fuzz
Testing is particularly valuable in assessing smart contract vulnerabilities and ensuring
method resilience under diverse inputs. It is a testing technique that where a specific program
is tested with inputs that are systematically generated in a random and iterative manner
to test a specific program [86]. Forge supports property-based testing, which allows for

26

5. Comparative Analysis of Test Runner Frameworks

testing general behaviors rather than isolated scenarios. The tool simplifies Fuzz Testing by
automatically generating multiple scenarios, representing different inputs, and executing test
methods with each of them [40].

Additionally, Foundry encompasses several other essential components, which are Cast,
Anvil, and Chisel. Cast serves as a versatile tool, enabling seamless interactions with EVM
smart contracts, facilitating transactions, and managing chain data. Anvil functions as the
local Ethereum node, similar to Truffle’s Ganache and Hardhat’s Hardhat Network. Finally,
Chisel offers a fast and comprehensive Solidity Read-Eval-Print Loop (REPL), empowering
developers to experiment with code snippets and efficiently test and explore Solidity code
[41].

Moreover, the Foundry framework is shipped with a set of cheatcodes [87] to manipulate
the blockchain’s state and test for specific reverts and events. They enable easy modification
of parameters such as the block number and runner’s identity, eliminating the need to keep
track of signers and contract addresses. In addition, they allow developers to dynamically
change the identity of an account during testing, making it effortless to use and fund multiple
dummy accounts within a single test method [40, 87].

Foundry also provides invaluable output for testing, such as gas reports and snapshots,
aiding in the estimation and tracking of gas consumption during tests. This feature may
particularly be essential for smart contract testing in an educational context, where gas
consumption stands as a significant performance metric. Moreover, Foundry boasts a fast and
flexible compilation pipeline with automatic detection and installation of the Solidity compiler,
incremental compilation, caching, and parallel compilation as needed. The framework also
supports fast Continuous Integration (CI) to automate the building and testing of code
changes [40].

In summary, Foundry proves to be a promising alternative to Truffle and Hardhat, offering
advantages such as speed, lightweightness, convenience, and advanced testing capabilities
with built-in tools.

5.2. Selected Smart Contract Projects for Analysis

In this thesis work, two smart contract projects have been deemed feasible for analysis. The
first project is the Vending Machine [88], a lightweight implementation consisting of a single
contract. This smart contract facilitates the purchase of donuts using Ether and includes
functionality for restocking the machine once all the donuts are sold out.

The second project is BBSE Bank 2.0 [89], an evolved and more complex version of BBSE
Bank [90], which was previously presented in the BBSE course at TUM. BBSE Bank 2.0
is a dApp consisting of 3 smart contracts that make use of the OpenZeppelin Contracts
[91], a library for secure smart contract development. This dApp provides users with the
opportunity to earn interest by depositing Ether. The amount of interest earned is determined
by a predetermined annual return rate. Users have the flexibility to withdraw their Ether
back at any time, but they stand to accumulate more interest the longer their deposit remains
untouched. As a reward for their participation, users receive BBSE tokens, which are built on

27

5. Comparative Analysis of Test Runner Frameworks

the OpenZeppelin’s ERC20 token standard. Moreover, in the latest version, BBSE Bank 2.0,
users have the added capability to borrow ETH by offering their BBSE tokens as collateral
[89].

Both of these projects offer a diverse range of characteristics and functionalities, making
them ideal candidates for the research and analysis. Additionally, it is worth noting that
BBSE Bank 2.0 is a more complex and resource-intensive smart contract project compared
to the Vending Machine. With the 3 smart contracts developed for the project that import
OpenZeppelin Contracts, the compilation of BBSE Bank 2.0 requires a total of 8 smart contracts
to be compiled, whereas the Vending Machine only consists of a single compiled smart contract.
This contrast in complexity adds depth to the analysis and provides developers with the
opportunity to explore a wide range of scenarios and performance characteristics.

5.3. Usability and Development Experience

There are two main options for writing automated tests for Ethereum smart contracts:
JavaScript and Solidity. As discussed above, the main testing language for Truffle and
Hardhat is JavaScript, whereas Foundry uses Solidity tests. It is worth mentioning that
TypeScript can also be used with both Truffle and Hardhat. However, for the purposes of this
comparison, JavaScript was chosen for use with both Truffle and Hardhat due to its simplicity
in implementing concise scripts. It should be addressed that while Truffle also accepts tests
written in Solidity, this project scope will only include the tests written in Solidity with the
Foundry framework.

5.3.1. Truffle

The Truffle framework comes bundled with the Mocha testing framework [92] and the Chai
assertion library [93]. Developers use the testing syntax of Mocha and perform the actual
assertions via Chai’s assertion functions [94].

Setting up Truffle is a simple process. By globally installing Truffle with npm and running
Truffle’s $ truffle init command, a bare Truffle project can be created. Moreover, Truffle
provides pre-configured sample applications and project templates with helpful boilerplates,
known as Truffle Boxes, which makes project initiation effortless [76]. Dependency man-
agement is handled by npm, and all project configurations are defined in the truffle-config.js
file. Furthermore, executing the $ truffle test command after creating a simple smart contract
with a test script will run the test for the smart contract. Additionally, contracts can be
pre-compiled using the $ truffle compile command, a useful feature that will be explored in
the upcoming sections when containerization of the projects is discussed.

Truffle is a mature framework with extensive documentation [76], and it has a strong
community support. These aspects can be decisive factors, even if the framework may have
slightly slower runtimes. Furthermore, JavaScript, a widely adopted programming language,
is familiar to many developers, making Truffle accessible to developers with varying levels of
experience. The learning curve of the framework is relatively smooth, allowing developers to

28

5. Comparative Analysis of Test Runner Frameworks

quickly adapt and utilize its capabilities effectively.
To initiate the analysis, Truffle was selected as the starting point. For the smaller smart con-

tract project, Vending Machine, 7 distinct tests were written, providing 100% Line and Branch
Coverage. These tests cover various scenarios, such as verifying if donuts can be purchased
by single or multiple accounts, or if the purchase of donuts is prevented due to insufficient
payment. In the case of the bigger and more complex project, BBSE Bank 2.0, 3 JavaScript test
files, containing 27 tests in total, for 3 different smart contracts were already available on the
GitHub repository. These tests achieved 100% Line Coverage and 93.33% Branch Coverage,
extensively covering different scenarios by utilizing various accounts with different Ether
balances. The test functionalities utilized in these tests are extremely comprehensive, as they
effectively assess multiple scenarios. Therefore, implementing equivalent functionalities with
the other two frameworks, Hardhat and Foundry, will offer adequate insights into these
frameworks.

For illustrative purposes, the following code block (see Listing 5.1) highlights several
significant functions that represent how specific operations are performed with Truffle.

1 // A test suite is defined like this
2 // Available accounts (addresses) are passed as an argument by default by Truffle
3 contract("BBSEBank", (accounts) => { /** Tests go here! */ })
4

5 // Sending 10 Ether from an unused account to the BBSE Bank
6 await web3.eth.sendTransaction({
7 from: accounts[6], to: bbseBank.address,
8 value: web3.utils.toWei("10", "ether") // Ether needs to be parsed to Wei
9 })

10

11 // Get the balances of the second account and the BBSE Bank
12 web3.eth.getBalance(accounts[1])
13 web3.eth.getBalance(bbseBank.address)
14

15 // Deposit 5 Ether to the BBSE Bank using the third account
16 await bbseBank.deposit({
17 from: accounts[2],
18 value: web3.utils.toWei("5", "ether")
19 }, /** Rest of the arguments */)
20

21 // Update the rate using the owner, the first account
22 await oracle.updateRate(33, /** Rest of the arguments */, { from: accounts[0] })
23

24 // Call oracle.getRate function using a non-owner account
25 // If the following call does not throw an error, then "GetNewRate" is emitted
26 const tx = await oracle.getRate({ from: accounts[1] })
27 truffleAssertions.eventEmitted(tx, "GetNewRate", (event) => {})

Listing 5.1: Several Important Functions in JavaScript with Truffle

29

5. Comparative Analysis of Test Runner Frameworks

In summary, Truffle provides a developer-friendly experience, making it easy to retrieve
some test accounts (with addresses provided by the framework) preloaded with some Ether.
It also simplifies sending transactions between accounts or contracts and checking balances of
accounts or contracts. Furthermore, the framework offers a convenient approach to modify
the caller’s identity when invoking a function and to specify a particular amount of Ether for
the call. This is achieved by passing the payload object, which contains from and value ,
as the final argument to the function. It should be noted that when passing Ether to a
function, it must first be converted to Wei using the toWei function of web3.utils package.
Additionally, Truffle comes with some assertion methods that enable the verification of
whether a specific event has been triggered. To utilize this functionality, the truffle-assertions
[95] package needs to be installed.

5.3.2. Hardhat

The Hardhat framework relies on Ethers to connect to Hardhat Network, and similar to
Truffle, it also employs Mocha and Chai for the tests but still offers its own built-in assertion
library. This library includes custom Chai matchers and the Hardhat Network Helper that
streamline test code writing and eliminate the need to import external libraries like Chai
[79]. This makes Hardhat more optimized and tailored for testing Ethereum smart contracts.
Despite these advantages, Chai was also chosen during the transition from Truffle to Hardhat
to minimize modifications in the existing tests written with Truffle.

The installation process for Hardhat is straightforward. Unlike Truffle’s global installation,
Hardhat is locally installed in the project via npm, providing developers with a reproducible
environment to avoid future version conflicts [79]. To create a new project, developers start
an npm project using the npm init command, add Hardhat as an npm dev dependency1, and
then execute $ npx hardhat to generate an empty or sample project structure. Having the
dependency management also handled by npm, Hardhat keeps all project configurations
in the hardhat.config.js file. Besides, it manages everything with scripts, although this is
not relevant for the testing purposes. The tests are simply run with the $ npx hardhat test

command. In addition, the contracts can be compiled as well with the $ npx hardhat compile
command. It should be noted that Truffle, similar to Hardhat, offers the option for local
installation via project dependencies. This aspect will be further explored and detailed in the
upcoming sections focusing on the containerization process.

Regarding the development experience, Hardhat did not exhibit significant differences
when compared to Truffle. The main visible distinction between the two frameworks is that
Truffle includes a more graphics-based interface that prioritizes ease of use for developers,
while Hardhat primarily emphasizes the use of the command line [94]. Rewriting all the tests
for both projects, 7 tests for Vending Machine and 27 tests for BBSE Bank 2.0, required some
research and reconfiguration, as identity, ether management, and the use of test accounts in
Hardhat differ slightly from Truffle. Furthermore, the transition from Web3.js to Ethers.js also

1Development dependencies, often referred to as dev dependencies, are specific npm dependencies required
exclusively for the project development.

30

5. Comparative Analysis of Test Runner Frameworks

took some time, but ultimately resulted in a more readable code.
In the code block of the preceding section (see Listing 5.1), the implementation of several

important functions with Truffle was demonstrated. Now, the subsequent code block (see
Listing 5.2) illustrates the implementation of these functions using Hardhat.

1 // A test-suite is defined as follows, but this time no test account is passed
2 describe("BBSEBank", () => { /** Tests go here! */ })
3

4 // The test accounts (signers) are retrieved using Hardhat's ethers library
5 const accounts = await ethers.getSigners();
6

7 // Sending 10 Ether from an unused account to the BBSE Bank
8 await accounts[6].sendTransaction({
9 to: bbseBank.target, // "target" instead of "address"

10 value: ethers.parseEther("10") // Truffle: web3.utils.toWei
11 })
12

13 // Get the balances of the second account and the BBSE Bank
14 ethers.provider.getBalance(accounts[1].address) // Truffle: web3.eth.getBalance
15 ethers.provider.getBalance(bbseBank.target) // "target" instead of "address"
16

17 // Deposit 5 Ether to the BBSE Bank using the third account
18 await bbseBank.connect(accounts[2]).deposit({
19 value: ethers.parseEther("5")
20 }, /** Rest of the arguments */)
21

22 // Update the rate using the owner, the first account
23 await oracle.connect(accounts[0]).updateRate(33)
24

25 // Check if calling oracle.getRate using a non-owner account emits "GetNewRate"
26 await expect(oracle.getRate({ from: accounts[1] })).to.emit(oracle, "GetNewRate")
27

28 // Expect bbseBank.payLoan to be reverted with the following message
29 await expect(bbseBank.connect(accounts[1]).payLoan({
30 value: ethers.parseEther("0.0001") // Less than the borrowed Ether is provided
31 })).to.be.revertedWith("The paid amount must match the borrowed amount")

Listing 5.2: Several Important Functions in JavaScript with Hardhat

In terms of the coding differences, the same functionality was successfully achieved in
the tests with Hardhat, although some variations were observed (see Listing 5.2). Firstly,
Hardhat utilizes Ethers.js as its default library, while Truffle uses Web3.js. As a result, certain
functions, such as parsing Ether and retrieving balance, are performed using ethers instead
of web3. Secondly, as shown in the code block above, Hardhat does not automatically pass
test accounts as arguments to the test suite, as evident in Line 2 of Listing 5.2. Instead, one
must call the getSigners function from Hardhat’s ethers library to obtain the accounts (Line
5). It should be noted that the accounts returned are HardhatEthersSigner objects, unlike
Truffle, where the accounts are represented as addresses. HardhatEthersSigner includes

31

5. Comparative Analysis of Test Runner Frameworks

various functions, such as the sendTransaction function used for sending Ether. Thus,
when sending Ether between two accounts, the sender’s sendTransaction function is called
instead of specifying the sender’s address in the payload object (Line 8). Furthermore, to get
the balance of an account, the address attribute of the account object must be provided (Line
14). In addition, the balance of a contract is obtained using the contract’s address, which,
unlike Truffle, is accessed via the target field instead of address (Line 15). Thirdly, changing the
identity before calling a function is not accomplished through the from field in the payload
object; instead, it is achieved through a contract’s connect function (Line 18). Lastly, Hardhat
provides special Chai matchers known as Hardhat Chai Matchers, which extend expect and
allow checking if a specific event has been triggered (Line 26) or if a particular function call is
reverted (Line 29). In Truffle, the latter check is performed using a try/catch block.

In a nutshell, despite the variations in test implementation, both frameworks, Truffle and
Hardhat, achieve the same functionalities. Hardhat, however, offers enhanced flexibility in
the development of smart contracts [80].

5.3.3. Foundry

The Foundry framework employs Solidity as the language for its tests. The functionality of
the tests will be replicated using this framework, with all tests being rewritten in Solidity,
which is a language fundamentally different from JavaScript. Consequently, more extensive
code changes are anticipated during this process. Unlike JavaScript tests that can only cover
external and public Solidity functions, and also evaluate contract behavior from an external
client’s perspective using contract abstractions and web3/ethers, Solidity tests enable a more
direct examination of each function in a contract in a bare-to-the-metal fashion [96]. This
advantage arises because Solidity tests are written in the same language as the contracts being
tested.

Though Foundry is a relatively newer framework compared to the others, the official
documentation, Foundry Book [40], offers a great way to get familiar with the framework.
The initial steps with Foundry, ranging from installation to obtaining the initial results,
were straightforward and thoroughly documented. In contrast to the previous frameworks,
Foundry is not shipped as an npm package. The framework can be installed by building
the project from source with the Rust compiler and Cargo, the Rust package manager, or
simply using Foundryup, the Foundry toolchain installer. For the sake of speed, simplicity,
and having to run fewer commands, the latter method was opted for. In the initial step,
Foundryup is installed using the command $ curl -L https://foundry.paradigm.xyz | bash , fol-

lowed by the execution of $ foundryup to obtain the latest (nightly) precompiled binaries
of Foundry’s essential components: forge, cast, anvil, and chisel [40]. Subsequently, Forge,
a command-line tool packaged with Foundry, can be utilized to create a Foundry project
using the command $ forge init . Additionally, as discussed in the previous sections, Foundry
manages dependencies through git submodules rather than npm packages. Hence, to in-
stall a dependency, the command $ forge install package_name is sufficient. The package
is then installed by cloning its source code from GitHub under the lib directory by de-
fault and the git submodule is added to the .gitmodules file of the repository, indicating

32

5. Comparative Analysis of Test Runner Frameworks

that the package is another git repository, and its contents will not be committed to the
current repository. For instance, OpenZeppelin Contracts are installed via the command
$ forge install Openzeppelin/openzeppelin-contracts . Once the Foundry project is initialized,

and the dependencies are installed, running tests located in the src directory can be accom-
plished using the $ forge test command (this is the default configuration, similar to Truffle
and Hardhat’s use of the contracts directory). Overall, this simplicity in setup and testing
enhances the usability and accessibility of the Foundry framework.

Foundry, just like the other frameworks, comes with comprehensive documentation, and
with the Solidity programming language being around for a few years, there are adequate
resources available online. However, being a relatively new framework, finding online help or
resolving issues specifically related to the framework can be more cumbersome compared to
Truffle and Hardhat. Certain errors encountered during this work required additional time to
resolve compared to those encountered in Truffle and Hardhat.

The development process with Foundry required extra time due to the difference in the
programming language used for writing tests. Consequently, the transition from Truffle
to Foundry was not as seamless as the transition from Truffle to Hardhat. For instance,
in Foundry, changing the identity and using different test accounts is not done via some
accounts provided by the framework, as in Truffle and Hardhat, but via Foundry’s cheatcodes.
These cheatcodes provide developers with powerful assertions and the ability to change the
state of the EVM and perform mocking. The Solidity interface for all cheatcodes in Forge is
accessible in the Cheatcodes Reference section of the Foundry Book [87].

The implementation of various key functions, previously showcased with Truffle and
Hardhat in the code blocks of the preceding sections (see Listing 5.1 and Listing 5.2), required
further adaptations to align with Foundry’s unique approach. These adaptations are demon-
strated in the upcoming code blocks (see Listing 5.3 and Listing 5.4). Initially, the cheatcodes
are defined through a custom interface, as shown in the code block below (see Listing 5.3).

33

5. Comparative Analysis of Test Runner Frameworks

1 // Cheatcodes: https://github.com/foundry-rs/forge-std/blob/master/src/Vm.sol
2 interface Vm {
3 function prank(address) external; // Change msg.sender for the next call
4 function startPrank(address) external; // Change msg.sender until stopPrank
5 function stopPrank() external; // Reset msg.sender changed by startPrank
6 function deal(address, uint256) external; // Set the balance of an address
7 function roll(uint256) external; // Set the block number (block.number)
8 function expectRevert() external; // Assert the next call reverts
9 function expectRevert(bytes calldata) external; // ... with a message

10 function expectEmit() external; // Assert a specific log (emit) is emitted
11 /** ... and more as needed */
12 }
13

14 abstract contract ExtendedDSTest is DSTest {
15 // HEVM_ADDRESS is 0x7109709ECfa91a80626fF3989D68f67F5b1DD12D
16 Vm internal constant vm = Vm(HEVM_ADDRESS);
17

18 // address(0) is reserved for console.log and address(this) is the owner!
19 // Start at 10 to skip the first few accounts
20 uint160 internal constant firstTestAccId = 10;
21 }

Listing 5.3: Defining Foundry’s Cheatcodes Interface

Implementing cheatcodes is straightforward (see Listing 5.3); it involves creating an interface
and writing the definitions of the functions intended to be used. Normally, instantiating
this interface in a test contract with the address HEVM_ADDRESS , which makes the cheatcodes
available, allows the use of the cheatcodes defined in the interface (Line 16). To improve code
readability and increase reusability of these cheatcodes across multiple test files, an abstract
contract named ExtendedDSTest is created (Line 14). Other test contracts then inherit from
ExtendedDSTest to utilize these cheatcodes.

It is worth noting that ExtendedDSTest inherits from DSTest [97], a library bundled with
the Forge Standard Library, which provides basic logging and assertion functionalities [40]
(Line 14). By inheriting from ExtendedDSTest , test contracts automatically gain access to
these functionalities as well, as ExtendedDSTest already inherits from DSTest . Thus, there
is no need to inherit from DSTest in the test contracts.

Another critical aspect to consider is the difference in the use of test accounts (addresses). In
the other frameworks, Truffle and Hardhat, accounts[0] represents the owner, and the test
accounts start from index 1 (accounts[1] , accounts[2] , etc.). However, it is observed that
Foundry designates address(this) as the owner’s address, while address(0) is reserved
for console.log . Hence, for achieving consistency, the test accounts are started from an
arbitrary index, defined as firstTestAccId , and set to 10 within the ExtendedDSTest
contract (Line 20). Subsequently, this variable is used in the test contracts by incrementing
its value as needed. For instance, the address of the first and second test accounts would be
address(firstTestAccId) and address(firstTestAccId + 1) respectively. It is essential

to note that the type of this variable is uint160 as the address function expects the input to

34

5. Comparative Analysis of Test Runner Frameworks

be of type uint160 . This approach simplifies the process of obtaining addresses and avoids
unnecessary conversions.

The following code block (see Listing 5.4) illustrates how these cheatcodes are employed
and how several crucial functions, previously implemented with Truffle and Hardhat, are
now adapted to Foundry.

1 // A test suite, a test contract, is created like this
2 contract BBSEBankTest is ExtendedDSTest { /** Tests go here! */ }
3

4 // Sending 10 Ether to the BBSE Bank
5 vm.deal(address(bbseBank), 10 ether);
6

7 // Get the balances of a random account (42) and the BBSE Bank
8 address(42).balance;
9 address(bbseBank).balance;

10

11 // Deposit 5 Ether to the BBSE Bank using the third test account
12 vm.roll(block.number + 1); // Increment block number to simulate a real chain
13 vm.prank(firstTestAccId + 2); // Inject a change of user
14 vm.deal(firstTestAccId + 2, 5 Ether); // Deal 5 Ether to that user
15 bbseBank.deposit{value: 5 Ether}(); // Deposit 5 Ether to the bank
16

17 // Update the rate using a non-owner account by using a different cheatcode
18 vm.startPrank(firstTestAccId + 6); // Identity stays the same until stopPrank
19 oracle.updateRate(ORACLE_RATE); // + more function calls with the same identity
20 vm.stopPrank(); // Identity injection ends
21

22 // Check if calling oracle.getRate using a non-owner account emits "GetNewRate"
23 vm.prank(firstTestAccId); // Inject a change of user
24 vm.expectEmit(); emit GetNewRate("ETH/BBSE"); // Expect before function call
25 oracle.getRate(); // Call the function now
26

27 // Expect bbseBank.payLoan to be reverted with the following message
28 vm.expectRevert("The paid amount must match the borrowed amount");
29 bbseBank.payLoan{value: 0.0001 ether}(); // Must provide the borrowed Ether
30

31 // No need to use expectRevert if the function name starts with "testFail"
32 function testFail_5_RevertWhen_PayingLoanWithInvalidLoanAmount() public { ... }

Listing 5.4: Several Important Functions in Solidity with Foundry

Foundry successfully achieves the same functionality in testing as the other two frameworks.
While each framework offers the ability to test the same scenarios, they differ in efficiency
and coding style. The presented code blocks (see Listing 5.3 and Listing 5.4) demonstrate the
definition and utilization of cheatcodes. To begin, a test contract is created by inheriting from
DSTest , or in this project, from ExtendedDSTest , an extension to DSTest developed in this

project for readability and reuseability (see Line 2 in Listing 5.4). Crucially, the DSTest library
also provides certain assertion functions such as assertEq , assertTrue , and assertGt .

35

5. Comparative Analysis of Test Runner Frameworks

Furthermore, the cheatcodes in Foundry enable identity changes and Ether transactions.
For instance, the cheatcode deal provides the ability to charge Ether to an account or a
contract using its address (Line 5). Additionally, the balance available in those addresses can
be retrieved by the balance field of the object returned by calling the address function
(Lines 8 and 9). To modify the state of the chain smoothly, the roll cheatcode can be used to
alter the block.number , simulating a real chain when required by certain functions in the
contracts (Line 12). Furthermore, Foundry’s prank cheatcode is used for changing identity.
It sets msg.sender to the specified address but only for the next call, including static calls,
but not calls to the cheatcode address. As an illustration, depositing Ether into the bank
involves simulating a user change using the prank cheatcode (Line 13), followed by the deal
cheatcode to allocate Ether to the user’s account (Line 14). Since invoking deal represents a
call to a cheatcode, the caller of the subsequent deposit function (Line 15) is the same user
injected via the prank cheatcode. To expand on this, as an alternative to prank , the cheat-
codes startPrank and stopPrank can be used to enable identity changes for a sequence of
calls. Any function call made between the invocation of startPrank and stopPrank will be
executed by the user specified with the startPrank cheatcode (Lines 18 to 20). In the context
of event listening, Foundry’s cheatcodes can also be used to listen for events. For example,
the expectEmit cheatcode, followed by emit SomeEvent("Your event message") , sets the
test runner to expect the specified event to be emitted with the specified message (Line 24).
Regarding testing conventions, Foundry’s expectRevert cheatcode is utilized to verify if a
call reverts, with a specified message if provided as an argument to the cheatcode (Line 28).
Finally, Foundry also follows a specific naming convention for tests, where test names starting
with test_ are expected to succeed, while those starting with testFail_ are expected to
fail (Line 32). Therefore, if the test name starts with testFail_ , it will pass in case of a revert
without the need to explicitly use expectRevert [40].

To summarize the development process, the learning curve for Foundry was slightly steeper
compared to Truffle and Hardhat, primarily due to the limited resources and the transition
from JavaScript to Solidity for writing tests. Nonetheless, the development process becomes
remarkably more streamlined and the code readability is enhanced due to fewer conversions
and the use of native function calls, since both contracts and tests are written in Solidity.
Besides, the use of cheatcodes to change the state of the chain, inject different identities and
listen for event triggers enhances the attractiveness of the Foundry framework. Overall, the
conclusion drawn is that the development experience with Foundry surpasses that of Hardhat
and Truffle, providing a more seamless and efficient workflow.

36

5. Comparative Analysis of Test Runner Frameworks

5.4. Features and Tooling

This section highlights some of the significant features offered by each framework, contributing
to the overall development and testing process.

5.4.1. Code Coverage

Each framework is capable of reporting code coverage with a detailed output, providing both
line and branch coverage values. Hardhat and Foundry include this feature out of the box,
whereas Truffle requires the installation of an additional package, solidity-coverage [98], to
obtain coverage results.

5.4.2. Assertion Libraries for Testing

As for the assertion libraries, each framework has a primary library equipped with numerous
assertion functions. By default, Truffle lacks an assertion library that can fully address
certain scenarios, such as checking if an event has been emitted. However, developers can
overcome this limitation by incorporating the truffle-assertions package into their projects,
which adds these missing assertion functions. In contrast, Hardhat has a built-in library
or plugin, Hardhat Chai Matchers, to enhance code quality and add testing capabilities
for Ethereum. As discussed in the previous section, this plugin offers essential assertion
functions, including the ability to verify if a contract call reverted. Meanwhile, Foundry comes
with a built-in assertion library called DSTest, which is part of the Forge Standard Library.
This comprehensive library not only includes basic logging and assertion functionality but
also encompasses all the additional features found in other frameworks’ additional libraries,
along with some extras. In summary, each framework adopts its approach to performing
proper assertions during testing, and all are fully capable of achieving the same functionality,
although some may require an additional library installation.

5.4.3. Debugging

All the frameworks come with various debugging options to assist in identifying and fixing
errors. It is essential to note that debugging a transaction on the blockchain differs from
debugging in traditional programming languages like Java, C++, Python, etc. In those
programming languages, the debuggers runs the code and interacts with it in real-time,
whereas debugging transactions involves working with the historical execution of transactions
on the blockchain, as long as the compilation or build artifacts are not cleared [76].

Truffle comes with an integrated debugger that resembles traditional command line debug-
gers. Any contract operation wrapped with the dedicated debug function creates a breakpoint,
and when the test reaches this point, Truffle interrupts the normal flow and initiates the
debugger, enabling developers to inspect the state, Solidity variables, and more [76]. On the
other hand, although Hardhat does not have a dedicated debugger, it enables the ability to use
console.log . Developers can take advantage of this feature to conveniently output logging

37

5. Comparative Analysis of Test Runner Frameworks

messages and contract variables to the console. This debugging approach is often favored
by developers as it significantly simplifies the debugging process in most cases [79]. Finally,
Foundry, ships with the most interactive debugger [99] among all the frameworks, offering a
Graphical User Interface (GUI), which facilitates navigation through the execution history
and more. It divides the terminal into four distinct pieces, each providing vital information
on contract behavior, such as the program counter and the accumulated gas usage.

In brief, among the debuggers provided by each framework, Foundry’s debugger exceeds
the debugging capabilities of other frameworks and clearly distinguishes itself as a powerful
tool for developing and testing smart contracts.

5.4.4. Mocking

Mocking is a valuable technique that simulates the behaviour of a function call without
actually executing it. It significantly contributes to the overall smart contract development
and testing process by allowing the examination of various scenarios. For instance, mocking
can help address questions such as, "Does the function behave as expected when a function
call reverts?" or "Does it properly set a specific variable to the specified value if the result from
another function call is below a certain threshold?". Hence, mocking empowers developers
to be able to test the contract’s business logic thoroughly and precisely, enabling assertions
across diverse scenarios.

Regarding the mocking capabilities of each test runner framework, Truffle and Hardhat do
not offer a built-in mocking mechanism. Nevertheless, alternative solutions are available. One
such option is to use Waffle [100], a separate library designed also for writing and testing
smart contracts. Waffle facilitates the mocking of smart contracts with detailed documentation
on installation procedures and how mocking operations are performed [101]. For example,
the function returning the balance of an address can be mocked such that it returns a specific
value when called during testing. In contrast, Foundry distinguishes itself with its remarkable
cheatcodes interface. These cheatcodes provide some mock functions capable of simulating
function calls and even function reverts, thereby offering similar functionalities as those
available in Waffle [102]. This once again makes Foundry a very interesting choice for testing
smart contracts.

5.4.5. Fuzz Testing

Fuzz testing (a.k.a. fuzzing) is an automated software testing technique utilized to detect
bugs by injecting random and unexpected inputs into a program. This approach has been
broadly employed as a fundamental method for conducting vulnerability testing of smart
contracts [103]. By applying this technique, edge cases in a function can be thoroughly tested
and analyzed.

During the investigation into fuzz testing with the test runner frameworks, it was discovered
that Truffle and Hardhat does not ship with a mechanism for fuzzing but there are some
alternative tools that can be employed to address this limitation. However, this would
require yet another setup and integration, which could not only be time-consuming but

38

5. Comparative Analysis of Test Runner Frameworks

also add complexity and increase the project’s size. Fortunately, Foundry takes care of this
inconvenience with its built-in support for fuzzing. Foundry’s forge incorporates a fuzzer
[104], which facilitates property-based testing. Implementing fuzz testing with Foundry is
straightforward – any test with at least one parameter will automatically undergo a fuzz run,
generating 256 distinct scenarios. For instance, the function testDeposit(uint96 amount)
gets executed multiple times with different input values of type uint96 each time. It should
be noted that the test contract is provided with a default amount of Ether equal to 296 Wei,
thus restricting the input value type to uint96 . Last but not least, this fuzzer can also be
configured globally or on a per-test basis, allowing more control over the fuzzing process (e.g.
to have more or less than 256 distinct scenarios) [104].

5.4.6. Gas and Memory Limit

Through flags passed to the test command, developers have the flexibility to set the block gas
limit and the memory limit of the EVM in bytes (with a default of 32 MB) [40]. While this
feature may seem too specific, it plays an important role in controlling the execution of runs.
For example, setting these limits could allow the service to terminate faulty or even fraudulent
smart contracts that might otherwise run in the background, consuming excessive resources
and keeping the service busy. By leveraging this capability, developers can safeguard the
service from potential disruptions, thus enhancing its overall availability.

5.5. Test Output and Performance Metrics

When running the test command (without using any flags) with all the frameworks, the
generated test output of each contains nearly identical information. It contains the names of
test functions and their pass or fail status, along with a final summary that demonstrates the
total number of tests executed across all test contracts. However, Foundry goes a step further
to include a summary for each test contract, offering more detailed test results. Additionally,
Foundry natively provides information about the gas consumption for each test function, a
crucial metric for assessing the efficiency of smart contracts. In terms of visual differences,
the test outputs (excluding the compilation logs) of Truffle and Hardhat appear identical. In
addition, both include the execution times of poorly-performing test functions. In contrast,
Foundry presents a distinct output, prioritizing detailed insights into the tests.

Moreover, Foundry does a great job in logging execution and setup traces offering a
valuable feature that can be accessed easily using specific flags (e.g., --vv) [40]. This can help
identify potential issues in the contracts, and the tree-like visualization of transactions can
also be utilized for providing metrics the students in the educational context.

Finally, in the context of educational performance assessment, one of the simplest metrics
that can be employed is the execution times of the tests. This metric does not differentiate
between the frameworks and can be easily calculated, if deemed feasible for the educational
purpose. It may serve as the most direct indicator of the overall efficiency of the smart
contracts.

39

5. Comparative Analysis of Test Runner Frameworks

5.5.1. Gas Usage as a Performance Metric

Gas usage can serve as a valuable performance metric to measure how well contracts perform
during the tests executed against them. All the frameworks offer gas usage estimation
capabilities, although through different functions. Truffle makes use of its built-in estimateGas
function, while Hardhat estimates gas using the estimateGas from the ethers library [76, 79].
Foundry, conversely, introduces its own gas tracking mechanism that displays the amount of
gas consumed in each test function within the test results [40]. On the other hand, Truffle
and Hardhat only allows gas consumption information to be printed through console.log ,
which may raise security concerns as these logs could be disrupted with the console.log
statements written in the contracts [76, 79].

Additionally, Foundry also provides two reporting tools for gas tracking, Gas Reports and
Gas Snapshots. While Gas Reports produces and logs estimations of the gas consumed by indi-
vidual functions, Gas Snapshots outputs how much each test consumes in gas. Comparatively,
Gas Snapshots are faster to generate but offer less granular reports compared to Gas Reports.
However, Gas Snapshots have the advantage of providing more built-in tools, like the ability
to compare gas usage between two snapshots (e.g., before and after changing the code) [40].

A noteworthy aspect of this tool is its potential value in the educational context. It
can be utilized to generate a performance metric for students’ smart contract projects. In
this scenario, instructors uploading their projects can also include the contracts they have
written. Once these instructors upload their contracts, the tool will generate the first gas
snapshot. Then, when students upload their contracts, the tool will compare the gas snapshots
of both the instructor-written contracts and the contracts of the students. This insightful
comparison derives an informative metric that demonstrates the percentage of how well a
student’s contract performed in comparison to the instructor-written one. Consequently, this
feature proves highly valuable for accurately assessing and scoring students’ smart contracts,
providing them with meaningful feedback to allow potential improvements to their smart
contract implementations.

5.6. Truffle vs. Hardhat vs. Foundry: Intermediate Performance
Results

The process of writing tests for both projects, Vending Machine and BBSE Bank 2.0, utilizing
the Truffle, Hardhat, and Foundry frameworks, provided valuable insights into the distinct
capabilities of each. Foundry emerged as the most robust platform for smart contract testing,
followed by Hardhat, and then Truffle. This evaluation delivered a detailed understanding
of the developer-friendliness, feature sets, and convenience offered by these frameworks,
enabling a comprehensive exploration of their strengths and weaknesses. Such insights are
crucial for making an informed decision about selecting the most suitable framework for the
final testing service. Nonetheless, it is essential to also consider performance as a vital decisive
factor, where even milliseconds matter, as this service is expected to be called frequently, and
faster simultaneous runs will result in reduced waiting times for users.

40

5. Comparative Analysis of Test Runner Frameworks

Table 5.1.: Compilation & Test Execution Times of Frameworks

Framework
Project

Vending Machine BBSE Bank 2.0

Truffle 2.71s 4.98s
Hardhat 1.90s 2.99s
Foundry 0.96s 1.59s

To evaluate performance, the tests were executed against the smart contracts in both
projects using all three frameworks on a well-equipped system2. The performance results
were obtained as the median of the time taken (measured in seconds) in 100 executions,
involving both compilation and testing of the smart contracts. It is important to mention that
to ensure consistent timing for each run, the cache was cleared after each execution to require
recompilation prior to the subsequent tests.

As demonstrated in Table 5.1 (visually represented in Figure B.1 as a graph), the frame-
works’ prior rankings based on their developer-friendliness and feature sets are reflected
in the performance results, demonstrating that convenience does not come at the expense
of performance. Foundry continued to excel as the top performer, having achieved median
compilation and testing times of 0.96 seconds and 1.59 seconds, respectively, for both the
small (Vending Machine) and large (BBSE Bank 2.0) projects. Hardhat secured the second
position, with execution times of 1.90 seconds and 2.99 seconds, while Truffle performed the
poorest, taking 2.71 seconds and 4.98 seconds for the same projects.

Even on a system overpowered for testing just a single smart contract project at a time
(a system with 10 CPU cores), Truffle took almost 5 seconds to compile and test the BBSE
Bank 2.0 project. This alone raises concerns, as its performance is likely to degrade further
in containerized setups with less powerful computing resources. Compared to the lighter
Vending Machine project, Truffle exhibited an approximate 83.76% increase in execution time3

in the BBSE Bank 2.0 project, which features larger test suites and more complex tests. This
leads to the conclusion that the bottleneck is in the test-running process for Truffle. Meanwhile,
Hardhat’s execution times were about 57.37% longer in the more intricate project, with the
entire testing pipeline taking just under 3 seconds. Foundry, on the other hand, successfully
delivered exceptional performance, with the entire testing pipeline taking nearly 1.6 seconds.
While Foundry’s overall speed is significantly higher than that of Hardhat, the percentage
increase in execution time between the two projects, Vending Machine and BBSE Bank 2.0 was
more noticeable for Foundry, with roughly 65.63% longer execution times. This indicates that
while Hardhat may be faster in compilation, Foundry is exceptionally quick in test execution,
with tests running in milliseconds, pointing to compilation as Foundry’s bottleneck.

2Apple’s ARM-based M1 Pro chip featuring 10 CPU cores (8 performance cores and 2 efficiency cores) and 16
GB of system memory (256-bit LPDDR5 SDRAM).

3An X% increase in execution time means that the execution duration is X% longer than a baseline measurement.
For instance, if the baseline execution took 5 seconds, and it now takes 10 seconds, this is a 100% increase in
execution time.

41

5. Comparative Analysis of Test Runner Frameworks

To summarize, these findings underscore the criticality of performance consideration,
especially in scenarios where this service may be deployed and run frequently. Selecting
a framework with faster overall execution times can remarkably enhance the efficiency
of the service. It can be observed from Table 5.1 that all the frameworks demonstrated
promising results completing the testing pipeline consisting of compilation and testing under
3 seconds for the lighter project and 5 seconds for the larger project. Foundry stands out
as the winner, being blazing fast in finishing the testing process of BBSE Bank 2.0 in 1.59
seconds, approximately 1.88 times faster than Hardhat. Hardhat, securing the second place,
consistently proves its performance by executing the tests of BBSE Bank 2.0 in 2.99 seconds,
roughly 1.67 times faster than Truffle. Finally, Truffle, despite its maturity and community
support, falls behind with an execution time of 4.98 seconds, coming in the last in this
comparison.

5.7. Containerization and Scalability Assessment

This section will build on the previous evaluations of usability, development experience,
tooling, and performance for the test runner frameworks, which are Truffle, Hardhat, and
Foundry, focusing specifically on their containerization capabilities. The objective is to deter-
mine if these frameworks can maintain their performance while operating in a containerized
environment, as facilitated by Docker, the chosen tool for containerization as outlined in
section 2.3, without compromising the features they offer.

In theory, the setup and testing process for smart contract projects should not differ signifi-
cantly from traditional applications when considering containerization. For this comparison,
most images will be based on the latest Ubuntu image from the Docker registries, providing
a reliable foundation for containerized environments. Specifically, Foundry is the only frame-
work that provides its own Docker image and guidance for container use, demonstrating
the feasibility of smart contract development and testing in such an environment. It is of
utmost importance that testing smart contracts in a containerized environment is possible
without compromising essential features or performance. Therefore, it is crucial to thor-
oughly analyze the containerization capabilities of each framework, examining how practical
and straightforward it is to containerize applications using these tools, and evaluating any
potential performance trade-offs when they are operated in isolated containers.

5.7.1. Setup

A project can be containerized by configuring it using either the Dockerfile or docker-compose.
While docker-compose is more suitable for containerizing multiple applications or microservices,
the Dockerfile is more appropriate for the purpose of this comparative analysis, which involves
building a single smart contract project and executing tests on the smart contracts. It is a
specific file used by Docker as a blueprint to build an image and run containers. Docker also
utilizes caching, allowing it to avoid redundant operations, such as reinstalling dependencies
when there are only changes in the code.

42

5. Comparative Analysis of Test Runner Frameworks

The Dockerfiles in this project are created by following the exact steps used in the local
development and testing process, where each line corresponds to a step taken in the local
environment to build and run the application. For the base image, the latest Ubuntu image,
ubuntu:latest, is used for each of the frameworks. Additionally, for the Foundry framework,
Foundry’s own Docker image, named ghcr.io/foundry-rs/foundry and hereafter referred
to as the foundry-rs image, is employed as well. This image is designed to be lightweight and
provides a pre-configured environment for building and running Foundry projects. Therefore,
it was deemed essential to also analyze the containerization capabilities of the framework
using the image created specifically for it.

The complete pipeline for this comparison involves setting up the environment, copying
project files to the image, installing packages and dependencies, and finally executing the
tests. As mentioned before, the goal of the final service is to allow students to upload their
smart contract inputs, which will then be tested with pre-written tests. This means that once
the image has been built, the only thing that needs to change is the src/contracts directory.
For this reason, two separate Dockerfiles are written for each project and framework, resulting
in the creation of two images. The build image is responsible for preparing the project folder
by installing the dependencies, copying the tests into it, and building the project. On the
other hand, the app image, built from the build image (as the base image), contains only the
src/contract directory. When this app image is run as a container, it executes the tests with
the copied contracts. This approach ensures that the project is set up and built only once,
allowing for multiple test executions without the need to repeat the build process.

However, it should be mentioned that during the implementation of the final service, this
approach may change to a more efficient one that creates a single image per project, as current
approach would result in a build image and an app image for each submission. This would
lead to as many images as there are submissions, quickly becoming unmanageable due to
the large number of images, consuming excessive disk space. A potential final approach
could involve having a single base image for the project, and each submission would then
run containers from that image by first copying the contracts into it. This approach would
significantly reduce the number of images in the system, making it more possible to handle a
large number of submissions without running into storage limitations.

In summary, the initial version of Dockerfiles for each framework is created by replicating
the exact steps required to run the framework on a local machine. These steps typically
involve installing the framework itself, copying essential project files (such as configuration
files and test code) into the image, installing necessary dependencies, and then finally moving
the contracts into it. The resulting image can then be used to run a container, which executes
all the tests. Additionally, it is worth mentioning that both Truffle and Hardhat were used
locally, meaning that they were installed as dev dependencies via npm rather than having a
global installation for the frameworks.

43

5. Comparative Analysis of Test Runner Frameworks

5.7.2. Optimization

In this section, some of the bottlenecks encountered during the containerization process will
be discussed. The final version of containerization will be utilized in the implementation of
the final service.

Containerization Version 1 (v1)

This is the base and simplest version discussed in the previous section.

Containerization Version 2 (v2)

In the initial version (v1) of containerization, the Solidity compiler was downloaded and
installed each time the Docker container was executed. Clearly, this presented an additional
overhead that could easily be remedied if this step was taken only once during the build
process. To address this redundancy, the first improvement involved downloading and
installing the compiler during the build process in the base image. As a result, the compiler
was no longer downloaded and installed during test execution, speeding up the testing
pipeline. Furthermore, there was still room for additional optimization. In the smart contracts,
there are often some external library imports, such as importing OpenZeppelin’s contracts
like the ERC20 token in BBSE Bank 2.0 project. These imported libraries are also compiled
everytime the tests are run in a Docker container, although this is redundant as modifying
the project code has no effect on them. Therefore, the compilation of these external libraries
could also be moved to the build process. This was achieved by implementing an empty
contract that includes all the required external libraries. Before copying the tests directory to
the base image, the empty contract was copied, and then the project was built and compiled.
As a result, the external libraries were compiled in the base image, not having to be recompiled
during test execution, leading to a faster runtimes during testing. To summarize, in this
optimized version of containerization, the Solidity compiler is downloaded and installed
during the build process, and the external libraries required for the contracts are compiled
as well. These improvements eliminate redundant operations during test execution and
significantly improve the overall testing speed.

Containerization Version 3 (v3)

This optimization builds on top of version 2 (v2) by incorporating additional compilation tasks
into the build process. It should be noted that this optimization is specific to Foundry because,
unlike Truffle and Hardhat, which use JavaScript for testing, Foundry’s tests are written in
Solidity. Therefore, in Truffle and Hardhat, there is no distinction between versions 2 and
3 (v2 and v3) in terms of performance. In contrast, Foundry could experience performance
differences. This optimization primarily focuses on the helper contracts written for the tests,
such as the one demonstrated earlier in Listing 5.3 where there is another contract file that
imports necessary libraries for the test and defines some of the cheatcodes. In this version of
containerization, such contracts and the libraries they import are compiled just once during

44

5. Comparative Analysis of Test Runner Frameworks

Table 5.2.: BBSE Bank 2.0 - Image Sizes with Containerization Versions

Framework Base Image

Containerization Version

v1 v2 v3

Truffle ubuntu 1050 MB 1080 MB 1080 MB
Hardhat ubuntu 612 MB 647 MB 647 MB
Foundry ubuntu 291 MB 311 MB 316 MB
Foundry ghcr.io/foundry-rs/foundry 113 MB 133 MB 137 MB

the build process. Although this might not appear to be a significant improvement, it can
still contribute to performance gains. This is achieved by writing the simplest version of
the smart contracts, where only the constructor and functions are included without their
implementation. To wrap up, this containerization version 3 (v3) specifically benefits the
Foundry framework by eliminating redundant recompilation of helper Solidity code within
the test directory, whereas Truffle and Hardhat do not benefit from this optimization due to
the fact that the tests are written in JavaScript.

5.7.3. Image Sizes

The size of the container can play a huge role in determining the most feasible framework. It
is critical for a Docker image to occupy as little space as possible on a machine, especially
considering that the final service is expected to handle multiple projects. Furthermore, the
service itself might be deployed on a machine with limited disk space and storage limitations.
Hence, efficiently utilizing resources depends on keeping the images as minimal as possible.

As shown in Table 5.2, there is a noteworthy difference in image sizes even when using the
same base images. Evidently, Truffle appears as the least lightweight option, with its image
size exceeding 1 GB. This oversized Docker image is significantly inefficient, especially when
compared to its competitor Hardhat, which manages to keep its image size just under 650
MB while still utilizing npm for package management. The difference of over 400 MB in
image size between Truffle and Hardhat emphasizes that Truffle itself is a resource-intensive
framework.

Conversely, Foundry is containerized using two different base images in this project: the
ubuntu image and the foundry-rs image. Foundry proves to be more efficient than the other
two frameworks, occupying approximately 51% and 71% less disk space than Hardhat and
Truffle respectively, while still maintaining full functionality in a 316 MB package. The primary
reason behind this efficiency is Foundry’s reliance on git submodules for dependencies, as
opposed to npm packages.

Finally, Foundry’s own base image, foundry-rs, results in an even smaller image size of
137 MB, managing to occupy roughly 57%, 79% and 87% less space than Foundry built on
the ubuntu image, Hardhat, and Truffle, respectively. However, it must be considered that
this image is based on a different architecture, x86_64, than the host4 and the ubuntu image,

4Apple M1 Pro (2021, 10-core CPU, 16 GB RAM).

45

5. Comparative Analysis of Test Runner Frameworks

Table 5.3.: Test Execution Times with Containerization Versions

Project Framework

Containerization Version

v1 v2 v3 Not Dockerized

Vending Machine

Truffle (ubuntu image) 4.70s 3.58s - 2.72s
Hardhat (ubuntu image) 4.31s 2.68s - 1.33s
Foundry (ubuntu image) 1.76s 1.02s 0.71s 0.70s
Foundry (foundry-rs image) 8.88s 7.69s 5.28s 0.70s

BBSE Bank 2.0

Truffle (ubuntu image) 8.27s 7.29s - 4.97s
Hardhat (ubuntu image) 7.02s 6.03s - 2.42s
Foundry (ubuntu image) 2.76s 1.52s 1.42s 1.33s
Foundry (foundry-rs image) 14.56s 11.29s 10.91s 1.33s

aarch64, which may result in poor performance or failure if run via emulation, as Docker’s
warning message states. On the other hand, the ubuntu image offers a variety of architectures,
still making it a reasonable choice despite the size difference.

5.7.4. Performance Results

This section evaluates the performance results of all frameworks across different containeriza-
tion versions, with execution times5 recorded in Table 5.3 (visually represented in Figure B.2
and Figure B.3 as graphs). These times indicate how long it took to run the Docker containers6.
For comparative analysis, non-containerized execution times were also included. Unlike
Table 5.1, which includes the combined compilation and testing times, Table 5.3 lists only the
test execution times, excluding the compilation stage. To measure performance outside of a
Docker container accurately, the pipeline from the containerization process was duplicated in
a non-containerized setting. As part of this approach, the directory was prepared after each
run to ensure that the same files were compiled during testing as those in the containerization
process. This guaranteed that both containerized and non-containerized setups underwent
identical testing steps, enabling an accurate comparison.

Containerization Performance of v1, v2 and v3

The initial containerization approach, designated as v1, involves downloading and installing
the Solidity compiler and compiling all of the Solidity files, including the dependencies. As
indicated in Table 5.3, this version introduces a performance bottleneck across all frameworks.
In the refined v2 approach, where the compiler is preinstalled and dependencies are compiled,
all frameworks complete the testing pipeline faster, with speedup7 values ranging from
approximately 1.13 to 1.82. Specifically, for the Vending Machine project, this optimization

5The performance results reflect the median execution times (measured in seconds) from 100 test executions.
6The resources provided for each container were 5 CPU cores and 8192 MB of memory.
7Speedup is defined as T1 / T2, where T1 is the execution time before optimization and T2 is the execution time

after optimization.

46

5. Comparative Analysis of Test Runner Frameworks

has the most benefits on Hardhat and Foundry (built with the ubuntu image) framework,
performing about 1.60 and around 1.73 times faster, respectively. In the case of the more
complex BBSE Bank 2.0 project, the gains are less distinctive, except for Foundry (built with
the ubuntu image), which exhibits a significant speedup value of approximately 1.82, while
other frameworks only show speedup values ranging from around 1.13 to 1.29.

The transition from the second version, v2, to the third one, v3, avoids redundant com-
pilations of certain Solidity files within the tests directory by facilitating their compilation
during the build process. As discussed in the preceding sections, this advancement is ex-
clusive to Foundry, as Truffle and Hardhat use JavaScript for testing. Foundry (built with
both the ubuntu and foundry-rs images) seems to benefit from this optimization, seeing a
boost in performance with a speedup value of about 1.45 for both images in the Vending
Machine project. However, in the BBSE Bank 2.0 project, the improvement is less significant, at
just approximately 1.05 times faster, which could even be attributed to the margin of error
between runs. The difference in performance between the two projects might come down to
the number of test contracts. The Vending Machine project includes a single smart contract,
which is tested by a single test contract, whereas the BBSE Bank 2.0 project has three, with
both projects involving a helper test contract that imports necessary libraries and defines
cheatcodes. Thus, in v3, the number of solidity files that need to be compiled during test time
decreases from three to one in the Vending Machine project (the actual test contract, helper
contract, and DSTest library imported in that helper contract). However, in the BBSE Bank
2.0 project, it decreases from five to three (two more test contracts for the additional smart
contracts). As a result, this might be the reason why the improvement is more noticeable in
projects with fewer smart contracts to test. Nevertheless, it is still a valuable improvement,
reducing the number of files that need to be recompiled.

To summarize, both Truffle and Hardhat demonstrate similar performance results, with
Hardhat outperforming Truffle with speedup values of around 1.34 and roughly 1.21 for
Vending Machine and BBSE Bank 2.0, respectively. Although this places Hardhat in second place
in terms of containerization performance, the difference between the two is so small that it
alone cannot justify choosing Hardhat over Truffle. However, as observed in previous sections,
Hardhat proves to be a more robust framework than Truffle in various aspects. Therefore, it
can be considered the winner in this comparison between the two frameworks. Foundry, on
the other hand, emerges as the top performer once again, surpassing the other frameworks
with excellent execution times of 0.71 and 1.42 seconds in the Vending Machine and BBSE Bank
2.0 projects, respectively. This places Foundry in the first position, outperforming both Truffle
and Hardhat in terms of the containerization performance, with significant speedup values
that are hard to overlook.

However, it must be noted that using the foundry-rs image instead of the ubuntu image
introduces a significant performance degradation, causing the framework to run both projects
approximately 7.44 and around 7.68 times slower, respectively. This drop in performance not
only places the framework behind Truffle but also results in test execution times of 5.28 and
10.91 seconds, which are simply not feasible for practical use. The reason for this performance
drop is related to using a different architecture than the host, which requires emulation. This

47

5. Comparative Analysis of Test Runner Frameworks

raises concerns, as the ubuntu image is shipped with a range of architectures and would likely
be a more robust choice to work in different systems with different architectures. Additionally,
even though the foundry-rs image results in a Docker image that occupies more than half
a space, as shown in Table 5.2, Foundry with the ubuntu image still produces a lightweight
image of 316 MB, which is more than twice as light as that of Hardhat. Consequently, it is
safe to say that Foundry with both base images works, but the one built with the ubuntu
image, being more robust, comes out as the winner.

Containerized vs Not Containerized

In the context of running the frameworks in a containerized environment, it is commonly
expected to observe a drop in performance due to virtualization. However, it is crucial to
assess the extent of performance loss for each framework when executed within a container.
To conduct a meaningful comparison, the focus is primarily on the larger project, BBSE Bank
2.0, as it applies more pressure on the frameworks.

When comparing Truffle and Hardhat, some surprising trends can be observed from
Table 5.3. Despite previously outperforming Truffle in all the analyzed aspects, Hardhat
experienced significant slowdowns in a containerized environment, becoming approximately
2.49 times slower when executed within a container. In contrast, Truffle’s performance only
declined by 1.47 times compared to its non-containerized performance. As a result, it becomes
evident that Hardhat does not efficiently handle containerization.

Meanwhile, Foundry, which outperformed the other two frameworks by completing the
pipeline in a considerably shorter time, impressively maintains its performance even within
a container, performing nearly identically to its non-containerized version. Completing
the entire pipeline in 1.33 seconds outside a container and 1.42 seconds within a container,
Foundry demonstrates exceptional efficiency in terms of containerization. The reason behind
this great performance might be explained in the following section, where each container
is executed with different hardware resources. It is plausible that Foundry’s effectiveness
regardless of containerization can be attributed to its minimal resource requirements.

5.7.5. Scalability Assessment

This comparison highlights the efficiency of each framework in terms of scalability. The
tests in the BBSE Bank 2.0 project were executed 100 times with each framework. In these
executions, the CPU core count systematically adjusted across 10 groups of executions, each
comprising 10 runs with different CPU core counts. The results presented in Table 5.4
(visually represented in Figure B.4 as a graph) demonstrate the median test execution times,
measured in seconds, obtained from each set of 10 runs performed with varying CPU core
counts for each framework.

To conduct these tests, the CPU core count was adjusted using the cpus flag while running
the Docker containers (e.g., $ docker run --rm -m 8192M --cpus 3.0 bbsebank2/foundry/app:v3).
The memory allocation was kept at 8192 MB, in line with the previous tests. The CPU core
counts values used were 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0, 2.5, and 3.0. As noticed, the CPU

48

5. Comparative Analysis of Test Runner Frameworks

Table 5.4.: BBSE Bank 2.0 - Test Execution Times with CPU Core Counts

Framework
CPU Core Count

0.5 0.6 0.7 0.8 0.9 1.0 1.5 2.0 2.5 3.0

Truffle (v3) 80.91s 40.70s 25.83s 20.37s 16.66s 14.60s 9.10s 7.97s 7.72s 7.53s
Hardhat (v3) 34.87s 24.20s 18.76s 15.38s 13.22s 11.48s 7.37s 6.67s 6.39s 6.23s
Foundry (v3) 2.85s 2.35s 2.00s 1.78s 1.61s 1.48s 1.43s 1.42s 1.42s 1.42s

core count limit can be expressed as a floating-point number, allowing containers to access a
specific percentage of a CPU core [105]. To provide an example, configuring the limit to 0.5
would grant the container a maximum of 50% of a CPU core.

Regarding memory configuration, adjusting this value had minimal impact on results as
long as it exceeded a certain threshold, the minimum memory required for each framework’s
functionality. Truffle demanded a minimum of 512 MB, whereas Hardhat’s requirement was
lower, at 256 MB. In contrast, Foundry demonstrated the ability to operate with as little as
128 MB of memory. It must be noted that memory allocations were set in powers of 2.

As depicted in Table 5.4, both Truffle and Hardhat struggle when operating with limited
resources. Truffle’s test execution time approaches 100 seconds with 0.5 CPUs, and the
framework cannot have feasible results until at least 1.0 - 1.5 CPUs are provided, a trend
similarly observed with Hardhat. However, Hardhat manages to significantly outperform
Truffle at low CPU settings such as 0.5 and 0.6 CPUs. Nonetheless, these resources are still
inadequate for practical use in the context of these frameworks. Both Truffle and Hardhat
need at least 1.5 CPUs to complete testing in 9.10 seconds and 7.37 seconds, respectively.
While they perform close to their optimal speeds at 3.0 CPUs, they still remain slightly slower.

In contrast, Foundry’s scalability analysis presents more satisfactory outcomes with fewer
CPU cores. It reaches its optimal performance using 0.8 to 1.0 CPU cores. In comparison,
Truffle and Hardhat show significant performance declines under the same conditions.
Truffle’s performance falls behind by approximately 11.44 to 9.86 times, while Hardhat’s
performance lags by about 8.64 to 7.76 times, compared to Foundry’s peak efficiency using
the same resources. Furthermore, with even fewer cores, the performance gap widens further,
with Foundry surpassing Truffle and Hardhat by speedup values of approximately 28.39
and roughly 12.24, respectively, at 0.5 CPU cores. In conclusion, this showcases Foundry’s
established resource efficiency. Achieving optimal performance with just a single CPU core
would significantly enhance the final testing service by effectively executing more submissions
simultaneously. As a result, Foundry stands out as an easily scalable framework, capable of
efficiently executing multiple instances concurrently on a single machine.

49

5. Comparative Analysis of Test Runner Frameworks

5.7.6. Lessons Learned and Conclusion

Insights into the containerization process were gained, considering both ease of containeriza-
tion and performance for the three frameworks. Some key lessons learned include:

1) Truffle’s containerization process was relatively effortless, but it suffered from long
build times due to its large framework size.

2) Hardhat’s containerization required specific packages to work, making it less robust and
smooth than Truffle. Both Truffle and Hardhat needed to have Node.js installation on
the image as the dependency management and framework installation were managed
by Node.js.

3) Foundry’s containerization process was straightforward as well, but it stood in need
of some experimentation to find an efficient Dockerfile setup. Moreover, dependencies
were hardcoded in the Dockerfile, which may in the future be in need of a script to
read them from the .gitsubmodules file and add them to the Dockerfile. However, this
approach might raise some issues if the projects were in subdirectories and there was
another git project in the parent directory. Conversely, Truffle and Hardhat were easier
in managing the dependencies, as all were defined in the package.json file, and simply
running $ npm install sufficed.

In evaluations of framework performance within containerized settings, Foundry consis-
tently outperformed the other two frameworks in all aspects. Remarkably, Foundry exhibited
not only reduced disk space consumption, as shown in Table 5.2, with smaller Docker images,
but it also exhibited faster test execution speeds. Specifically, as demonstrated in Table 5.3,
for a lightweight project, Foundry was about 3.77 times faster than Hardhat and around 5.04
times faster than Truffle. For the more complex project with heightened test complexities,
Foundry was approximately 4.25 times faster than Hardhat and roughly 5.13 times faster
than Truffle. Hence, Foundry’s performance dominance intensified as the number of tests
increased, underscoring Foundry’s superior efficiency in test execution. In brief, Foundry
admirably preserved its outstanding performance even in a containerized environment.

Moreover, Foundry’s lightweight nature and efficiency in resource utilization enabled it to
deliver almost the same performance results in a container. This is crucial as the frameworks
will be deployed as containers, and their performance inside containers is of great importance,
regardless of their speed outside a container.

Lastly, Foundry showcased greater scalability potential by maintaining its performance
even when allocated fewer CPU cores, as illustrated in Table 5.4. It started operating
optimally at 0.8 CPU cores and exhibited viable results even at levels as low as 0.5 CPU
cores. This characteristic empowers Foundry to function optimally in situations with limited
computational resources or in scenarios involving multiple simultaneous executions.

In conclusion, considering all these aspects, it is evident that Foundry would be a safe
and efficient choice for both containerized and non-containerized environments. Its efficient
resource utilization would allow for more simultaneous executions by reducing the CPU
count allocated for each run.

50

5. Comparative Analysis of Test Runner Frameworks

5.8. Discussion and Recommendation

In conclusion, the preceding sections comprehensively examined the test runner frameworks:
Truffle, Hardhat, and Foundry. This analysis encompassed a detailed overview of each
framework, assessing their usability, development experience, supplementary features, tooling,
test output, performance metrics, containerization capabilities, and scalability.

Each of these frameworks features a straightforward installation process that is carefully
documented on their respective websites, and they have all demonstrated successful testing
in the Vending Machine and BBSE Bank 2.0 projects. However, significant differences in
usability and development experience emerged, as highlighted in section 5.3. While Truffle
and Hardhat offered easier complexity in writing tests due to the tests being written in
JavaScript, Foundry offered a more satisfying development experience, leading to enhanced
code readability. After becoming familiar with the framework, it became clear that Foundry
would be an attractive choice due to its user-friendly development environment. In addition,
using Solidity in tests allowed for fewer conversions and direct function calls, which improved
code efficiency and readability. In addition, Foundry’s special features, particularly Foundry’s
cheatcodes, further simplified tasks such as state manipulation, caller identity changes, and
specific revert and event testing.

Regarding feature sets and tooling, each framework offers code coverage analysis, although
Truffle requires additional libraries for this feature. Truffle also relies on additional libraries
for specific essential assertions, whereas Hardhat and Foundry come equipped with built-in
robust assertion functions. Moreover, in terms of the debugging process, Foundry excels
in debugging capabilities, providing the most powerful debugger among the three frame-
works, with a GUI for transaction interaction. Additionally, Foundry offers built-in mocking
possibilities through cheatcodes, eliminating the need for separate installations as required
by the other two frameworks. Similar considerations apply to fuzz testing, a method for
detecting edge cases by injecting random inputs. Foundry simplifies this process simply
through the use of arguments in test functions, while the other frameworks require additional
tools. Finally, all three frameworks allow the setting of gas and memory limits to enhance
system security, such as terminating faulty or potentially fraudulent smart contracts.

Each of the three test runner frameworks provides test output, illustrating both successful
and failed tests, with distinct output styles and levels of detail. As performance metrics,
execution times and gas usage are viable candidates for measurement. While measuring
execution times is straightforward, gas estimation requires specific functions. All three
frameworks provide gas estimation functions, with Foundry going a step further by offering
a metric illustrating the gas difference between different versions of the same project. This
enables a clear testing of whether an optimization or code change has had a negative or
positive effect. Moreover, this feature might also be valuable for academic use cases, allowing
the comparison of student contracts with instructor-written ones.

Performance emerges as a crucial factor to consider, as clearly illustrated in Table 5.1.
Foundry impressively showcased significantly faster median execution times (measured in
seconds from 100 individual runs) compared to the other frameworks, with Hardhat closely
trailing, and Truffle lagging behind with the slowest execution times. To elaborate, Foundry

51

5. Comparative Analysis of Test Runner Frameworks

outperformed Hardhat by completing the testing pipeline around 1.88 times faster and left
Truffle far behind with a remarkable 3.13 times speed advantage.

The analysis of containerization capabilities has clearly favored Foundry. It not only
maintained an image size 51% and 71% smaller than its competitors, as demonstrated in
Table 5.2, but also outperformed the other two frameworks even within a containerized
environment. As indicated by the median execution times from 100 individual runs in
Table 5.3, Foundry exhibited exceptional performance compared to the other frameworks.
It completed the entire pipeline for the more complex project (BBSE Bank 2.0) in just 1.42
seconds, while Truffle and Hardhat took significantly longer with execution times of 7.29
and 6.03 seconds, respectively. This performance difference is impossible to overlook, and
it greatly enhances the feasibility of using Foundry in the final testing service as the test
runner framework. When one framework outperforms the others by more than 4 times, even
within a containerized setup, the choice becomes evident. Additionally, comparing Foundry’s
performance inside and outside of a container, the difference in results is minimal, further
highlighting Foundry’s efficient nature when working with containers.

In summary, this comprehensive analysis of the test runner frameworks, Truffle, Hardhat,
and Foundry, has highlighted Foundry as the clear top performer in almost every aspect, con-
sistently surpassing expectations with each section. Foundry resulted in more readable code
with tests written in Solidity and offered a rich set of features, including mocking, fuzz test-
ing, and comprehensive debugging with a GUI. Furthermore, Foundry also excelled in both
non-containerized and containerized environments, maintaining exceptional performance
even when operating within a container. In addition, as illustrated in Table 5.4, Foundry
stood out, particularly in scenarios with lower CPU core counts. It maintained its remarkable
performance, even with as few as 0.5 CPU cores, and achieved peak performance within the
range of 0.8 to 1.0 CPUs, whereas the other frameworks struggled to produce feasible and
workable results with such limited resources. With this assessment of scalability, Foundry
secures its position as the most developer-friendly, efficient, fast, and scalable framework
among the three options. Therefore, Foundry has been chosen as the preferred test runner
framework for this project, and it will be further utilized in this work, integrated into the final
testing service to facilitate the testing of submitted smart contracts.

52

6. System Design and Implementation

This chapter offers a detailed discussion on the design and implementation of the final testing
service, incorporating the selected test runner framework identified as the most suitable for
smart contract testing.

6.1. Stakeholders and Requirements

Before digging into the design and architecture of the testing service, it is essential to clearly
define the stakeholders and requirements. This section outlines the stakeholders involved
and specifies the requirements of the testing service.

6.1.1. Stakeholders

1) Students: In the core use case, students stand as the primary users who submit their
smart contract inputs to obtain test and performance results.

• Needs & Challenges: For optimal utilization, students must have unhindered
access to the service, particularly during peak times, which are usually close to
the deadline, as they could be graded depending on the needs of the instructors
or educational institutions. Crucially, students should have the capability to view
uploaded projects and effortlessly submit their smart contract inputs for evaluation.
It is imperative that they receive clear feedback on the status of their smart contract
inputs, including specifics like the number of tests passed/failed, the total or per-
test gas consumption, and the gas difference compared to the instructor-provided
solutions. Additionally, they need to be able to download their uploaded solutions.
However, one anticipates potential delays during peak times, given the fact that
students tend to make last-minute submissions. Furthermore, if students upload
non-executable smart contracts, the resultant feedback may be unclear. To avoid
this, students should pre-validate their smart contracts locally before submitting
them.

• Influence on Design: Students have a direct influence on the design, as this service
is being developed for them and their educational development. It is critical to
ensure that the testing service has a user-friendly interface; students should be
able to easily navigate the process of submitting their smart contract inputs for
specified projects and then analyzing the testing results.

53

6. System Design and Implementation

2) Instructors: These are the individuals who define and upload projects. The uploaded
projects include the test contracts against which students’ smart contract inputs are
assessed.

• Needs & Challenges: In addition to the functionalities provided to students,
instructors need the capability to upload and edit projects, view those projects,
and analyze the execution results alongside test results. To be considered "valid," a
project must include a functional smart contract input. Furthermore, the service
must provide the instructors with an easy-to-use interface for setting an execution
timeout, which serves as the maximum permissible time for the smart contract
inputs submitted by students. Instructors should also be able to set specific test
execution parameters, such as a gas limit for submissions. Furthermore, the service
must provide instructors with project and student submission filtering features, as
well as the ability to download any material published to the platform, whether it
is a project or a student submission. Just like the students, the instructors are also
strongly advised that they validate the projects locally before uploading, especially
since projects that fail to pass all the tests may provide unclear execution results,
especially if they fail due to excessive gas consumption.

• Influence on Design: Instructors also play an essential role in influencing the
service’s design. Their decisions determine which resources are made available
to students and the level of detail that students can view. In addition, instructors
should be able to define submission quotas for students within a certain time
frame.

3) Educational Institutions: These comprise schools and universities that might adopt this
service for use in courses.

• Needs & Challenges: For educational institutions, seamless implementation and
utilization of this service in courses is significant. The provided repository should
contain comprehensive information to set the service up effortlessly. Challenges
may arise, however, when facilities have requirements that deviate significantly
from the core scope of service.

• Influence on Design: Although this stakeholder group has no direct influence on
the overall design, it is important to consider the needs of different institutions in
the design of the service, such as what measurements are made visible to students
and how they are informed of their results.

4) Developers: Developers are an essential stakeholder group. They are responsible for
building, maintaining, and improving this testing service.

• Needs & Challenges: Similar to educational institutions, it is imperative that the
setup and portability of the service are simplified for developers. They should
also be provided with comprehensive technical documentation to facilitate service
maintenance and the development of additional features.

54

6. System Design and Implementation

• Influence on Design: While developers do not have a direct influence on the
current design, they possess the capacity to evolve the design based on the intro-
duction of new features and requirements.

6.1.2. Functional Requirements

This section outlines the functional requirements developed for the testing service based on
the thesis objectives.

System Overview

The automated testing service facilitates the submission and evaluation of Solidity smart
contracts in an educational context. The testing service leverages Foundry, a tool that was
identified as the best-performing after evaluating various test runner frameworks.

User Roles and Functionalities

1) User Authentication:

• FR1.1: The testing service shall offer a registration interface for students to create
their accounts.

• FR1.2: The testing service shall offer a login interface for all user roles, including
students and instructors.

2) Instructors:

• FR2.1: Instructors shall have the capability to upload smart contract projects.

• FR2.2: The testing service shall provide an interface for instructors to edit previ-
ously uploaded projects.

• FR2.3: The testing service shall validate the uploaded projects’ correctness by
running the uploaded smart contracts against the uploaded tests.

• FR2.4: Instructors shall be able to set execution timeout parameters, indicating the
maximum allowable duration for a student’s smart contract to execute.

• FR2.5: Instructors shall be able to define specific test execution parameters (e.g.
gas limit for submissions).

• FR2.6: Instructors shall be able to filter and view projects and student submissions.

• FR2.7: The testing service must ensure that any material submitted to the platform
can be downloaded by instructors, whether it is a project or a student submission.

55

6. System Design and Implementation

3) Students:

• FR3.1: Students shall be able to submit their smart contract inputs for testing
against instructor-uploaded tests.

• FR3.2: The testing service must display the results of the uploaded smart contract
inputs, including the number of tests passed/failed, gas consumption, and gas
difference measured against the instructors’ smart contract inputs.

• FR3.3: Students shall be able to filter and view their own submissions.

• FR3.4: The testing service must ensure that students can download their uploaded
submissions.

6.1.3. Non-Functional Requirements

In line with the thesis objectives, this section describes the non-functional requirements that
the testing service should meet.

1) Usability:

• NFR1.1: The user interface of the testing service must be user-friendly, allowing
students and instructors to navigate and perform tasks with minimal complication.

• NFR1.2: The execution details, containing all testing results, should be presented
to users in a clear and straightforward manner.

2) Reliability:

• NFR2.1: The testing service should have a high uptime, ensuring continuous
service to students and instructors.

3) Security:

• NFR3.1: Passwords and sensitive information should be encrypted.

• NFR3.2: All user data, including smart contract uploads and test results, should be
kept secure and protected from unauthorized access. While admins (instructors)
should have complete access, users (students) should only be able to access their
own submissions.

4) Stability:

• NFR4.1: The testing service shall provide safeguards to handle the execution of
inefficient or malicious code during smart contract testing.

5) Efficiency & Performance:

• NFR5.1: The testing service must evaluate student-submitted smart contracts using
the tests provided by the instructors efficiently, ensuring optimal performance.

• NFR5.2: The testing service should be able to handle multiple simultaneous
submissions from students, using message queueing, especially during peak times.

56

6. System Design and Implementation

6) Horizontal Scalability:

• NFR6.1: The infrastructure and database should be structured to allow the testing
service to scale out according to the number of users and submissions.

7) Maintainability & Portability:

• NFR7.1: The codebase should be well-documented and written in accordance with
best practices to facilitate maintenance and potential feature additions.

• NFR7.2: The testing service should be built in such a way that it can be quickly
transferred, deployed, or migrated to new platforms or environments.

6.2. High-Level Flow

Before digging into the system’s overall architecture, it is critical to first analyze the testing
service’s high-level flow with a sequence diagram. Studies have established that sequence
diagrams are one of the most widely used Unified Modeling Language (UML) diagrams, and
they are a convenient way to depict a set of interacting objects and the sequence of messages
that are exchanged between them, capturing the precise behaviour of the object classes in the
system [106].

The primary purpose of the testing service is to enable instructors to upload exercises or
projects. These uploaded files establish the groundwork for students to submit their smart
contract inputs, which are afterwards checked against the instructor-provided tests, resulting
in execution and test results. The overall flow of this procedure, from the instructor’s exercise
submission to the student’s retrieval of test results, is illustrated in Figure 6.1. It is crucial to
note that the high-level sequence diagram in Figure 6.1 is not a deep dive into the complexities
of the testing service, but rather provides a broader perspective. For instance, the "services"
object depicted in Figure 6.1 might not necessarily represent a singular service but could
encompass multiple microservices.

To outline the exact flow: Instructors begin by authenticating and logging into the system.
Once authenticated, they can upload an exercise. This step triggers the creation of a Docker
image from the uploaded zip folder containing the project files. Before this exercise data is
stored in the database, its correctness is verified by running a Docker container built from the
recently constructed Docker image. If successful, the exercise information is committed to
the database, and the instructors receive input regarding the execution and testing results.
Following this, students can then authenticate themselves by logging into the testing service
and proceed to upload their smart contract inputs. Upon submission, the system retrieves
relevant exercise data, such as the Docker image ID, and records the submission in the
database with an "Inconclusive" status. Utilizing the submitted smart contracts, a Docker
container is then launched using the exercise’s Docker image, running the tests against the
submitted smart contracts, subsequently producing test results which are then returned to
the students. After that, performance metrics such as execution time, gas consumption, and
gas differences are derived from this output, and the submission details are updated in the
database, with the status being set to either "Success" or "Failure" based on the test results.

57

6. System Design and Implementation

Figure 6.1.: High-level Sequence Diagram for Exercise Upload & Code Submission

Conclusively, students are presented with a comprehensive report on the testing results of
the executions of their smart contracts.

6.3. Architecture

The entire testing service, as illustrated in Figure 6.2, is managed as a single Docker Compose
project. This includes three services: Test Runner, Backend Services, and the RabbitMQ
instance, in addition to the MongoDB instances, which are also Dockerized. These services
are all initialized as Docker containers.

Docker Compose facilitates the composition of applications with numerous containers by
describing the individual components and their relationships, easing the deployment and
maintenance of multi-container applications, and ensuring dependencies between containers
are met [107]. For instance, considering the cross-container dependencies within this testing

58

6. System Design and Implementation

Figure 6.2.: The Architecture of the Testing Service

service, the Test Runner container requires the RabbitMQ container to be healthy before
initiating, and the Backend Services container waits for the Test Runner container’s readiness,
ensuring accessibility to the Docker Daemon.

6.3.1. Test Runner

This is the primary service, written in TypeScript, which is responsible for smart contract
testing and has a dedicated MongoDB database to store data related to Docker images and
the histories of executed Docker containers. Within this Docker Compose setup, a three-node
replica set is configured. A replica set is a collection of MongoDB servers that keep an identical
data set. This setup enhances data redundancy and ensures automatic recovery in case of
system outages [108]. It also boosts availability and supports database transactions, allowing
developers to initiate database sessions and commit changes only when the operation is
error-free. For efficiency, to be further detailed in subsequent sections, the Test Runner service
steers clear of the Docker-in-Docker approach and instead uses the host’s Docker daemon to
build Docker images for projects and execute Docker containers for smart contract testing.
This process is facilitated by Docker volume binding: the host’s Docker daemon socket is
linked to the container’s Docker socket. Hence, when the Test Runner application attempts to
engage with the Docker daemon, it communicates via the linked socket, allowing it to access
the host’s Docker daemon rather than a nested Docker daemon within the service’s container.

59

6. System Design and Implementation

6.3.2. Backend Services

This backend application, written also in TypeScript, offers REST APIs to users for interacting
with the testing service. Similar to the Test Runner, it possesses its own replicated database,
and it stores data related to uploaded projects, submissions, and their corresponding exe-
cution results, inclusive of uploaded files. Additionally, an integrated authentication and
authorization module makes use of JWTs. These JWTs, composed of a header, payload,
and signature, allow for user authentication without requiring repeated connections to the
resource server or database [109]. User credentials are securely stored in the database with
encrypted passwords.

6.3.3. RabbitMQ Instance (Message Queueing)

To ensure that the Test Runner and Backend Services operate in isolated environments,
RabbitMQ, a message broker, is employed. This message broker enables message queueing,
thereby isolating the two services and providing fine-grained control over the request flow
from Backend Services to Test Runner. This restriction ensures that only a limited number of
requests are processed at the same time. Further specifics of RabbitMQ will be discussed in
the following sections.

RabbitMQ is integrated as a service within the Docker Compose project for simpler setup
and increased security, supporting its building and execution as a Docker container. It runs
within a designated Docker network, to which both the Test Runner and Backend Services are
connected. This setup ensures the security for the Test Runner since it can only be accessed
through this specific Docker network.

The RabbitMQ instance’s operational flow is as follows: The Test Runner consumes mes-
sages from RabbitMQ and returns results once processed. These results include both project
creations and test executions depending on the type of message sent. On the other hand,
Backend Services interact with the Test Runner entirely by sending messages to RabbitMQ.
These messages can be about project creation and exercise submission. Subsequently, Backend
Services subscribe to a specific reply channel, to which the Test Runner sends response
messages.

6.3.4. Frontend Application

This client application, developed using the Vue.js [110] framework, acts as the source of entry
for users to access this testing service and showcases that the service functions as expected.
This application only communicates with the Backend Services, sending REST API requests
and receiving replies. It is set up as a distinct Docker container rather than being deployed
within the same Docker Compose project as the testing service. This design decision ensures
that the testing service can be used as a library in other projects without the need for a
redundant user interface application.

60

6. System Design and Implementation

Figure 6.3.: Data Model of the Testing Service

6.4. Implementation Details

This section primarily outlines the data model and the implementation details of the testing
service. Additionally, it covers the establishment of inter-service communication, network
configuration, service isolation, and secrets management.

6.4.1. Database Selection and Data Model

It is critical to design an optimal data model that aligns well with the functional requirements.
The database choice, be it a relational database like PostgreSQL or a non-relational one such
as MongoDB, has a substantial impact on the overall performance of the testing service.
It crucial that the database chosen is compatible with the data model, ensuring optimal
efficiency during read and write operations.

MongoDB, a NoSQL database, was chosen for this testing service. Given that this appli-
cation’s data model was unlikely to contain many relations, a non-relational database was
considered more suitable. In contrast to table-based storage structures, MongoDB is schema-

61

6. System Design and Implementation

less and efficient at managing unstructured data [111]. Many fields in this service contain
JSON objects, and model changes are likely in the future due to changing requirements or
advancements made to the test runner framework used. Because of its efficiency for storing
unstructured data, MongoDB was an obvious choice. Scalability was another consideration in
this decision. While relational databases struggle with scalability at times, frequently relying
on vertical scalability via the addition of more hardware, non-relational databases excel at
horizontal scalability [111]. This means that rather than simply increasing the power of a
current node, the service can grow by adding more nodes and sharing data across those
multiple nodes.

The data model used by the Test Runner is demonstrated in Figure 6.3. The Test Runner’s
data storage is primarily focused on storing the current state of the Docker daemon and the
execution history of Docker containers. Such a configuration facilitates the monitoring and
representation of the current state of the Docker daemon. At the same time, it keeps historical
data, allowing for retrospection of all Docker container executions and their results. Docker-
Image and DockerContainerHistory are the main collections. The former records information
about the Docker images and their attributes, while the latter records information on the
execution of the launched Docker containers. Given that each Docker image is validated by
subsequent Docker container execution to ensure it is error-free, each DockerImage is linked to
at least one DockerContainerHistory. Additionally, nested schemas were incorporated for the
execution output, stored in a schema named DockerContainerResults. This design choice was
made to ensure structured management of the object storing the execution results.

Similarly, Figure 6.3 illustrates the data model used by the Backend Services, which is
directly linked to the specified realization of the functional requirements given in subsec-
tion 6.1.2. For authentication, the User collection stores email and encrypted passwords,
and for role-based access management, it stores user roles. The Project collection allows
instructors to upload and view projects. It stores project configurations and execution results.
The Submission collection stores the students’ smart contract input submissions. Each project
might be linked with zero or more submissions, tying a Submission to a certain Project. Both
of these collections have a results field for the execution output and a status enumeration that
represents test execution results. Furthermore, the Upload collection facilitates the download-
ing of files uploaded for both projects and submissions. It keeps the paths and contents of the
uploaded files, alongside the uploading user’s identity, the deployer, allowing an association
where a user might be linked with zero or more uploads. Finally, the MessageRequest collection,
which was designed for recording messages sent to the RabbitMQ instance, stores several
message properties and contents. This collection maintains a Many-To-One relationship with
the User collection.

6.4.2. Test Runner

The Test Runner stands as the central pillar of the testing service, designed and implemented
to execute student smart contracts against tests uploaded by instructors. This service is
encapsulated within a Docker container and integrated into the Docker Compose project.
Developed in TypeScript, its primary task is to construct Docker images using the instructor-

62

6. System Design and Implementation

provided projects and then run these images as containers to test the smart contract inputs
of the students. It makes use of Dockerode [112] as the Docker Remote API module to
communicate with the Docker daemon. The service is developed using the Node.js web
application framework, Express.js [113], which is used primarily to run the service as a server
on a designated port. Since this service is exclusively accessed through RabbitMQ, detailed
further in subsequent sections, the REST API functionalities of Express.js are redundant.
However, the framework still offers the potential to create REST endpoints that could act as
entry points. The following sections dive deep into the main functionalities of this service.

Healthcheck API

The service provides a simple REST endpoint for verifying connectivity to the Docker daemon,
essentially determining whether the Docker daemon is reachable. This health check is critical
for the entire testing service in the Docker Compose project. Services that depend on this
service, for example, will wait for it to be "healthy" before starting.

Building Docker Images from Uploaded Projects

Projects, along with their names, can be uploaded to the service, from which a Docker image
is created. The uploaded zip file is initially processed and stored in a temporary folder within
the Docker container’s file system. This zip file should unpack to a directory that contains
specific folders and files. Thus, the zip file is checked to ensure that it includes the necessary
folders, such as the test folder (containing the test contracts that will be used to test student
submissions) and the src folder (containing the instructor-developed smart contracts that
pass all tests). Additionally, the zip file is validated to see if it contains the essential files:
remappings.txt, which lists the paths to project libraries, and .gitmodules, used for defining
the libraries for installation, a method employed by Foundry as previously discussed in
section 5.3.

Upon validation, the contents of the zip file are moved to a uniquely named temporary
folder within the container’s file system. Following that, certain generic project files, namely
Dockerfile1, foundry.toml, and install_libraries.sh, are copied over. The Dockerfile is a file that, like
a Makefile, is used to construct images through a series of instructions [114]. The foundry.toml
[115] serves as a configuration file for the Foundry project and is maintained uniformly across
different projects. Lastly, the install_libraries.sh script is developed to be employed during the
Docker image building phase to extract dependencies from .gitmodules file and install them in
the container.

After unzipping the uploaded zip file and writing it to a temporary folder, the contents of
the temporary project folder are used to build a Docker image using the buildImage function
from the Dockerode module. The name of this image corresponds to the provided project
name. The Dockerode module also provides details about the built Docker image, including its
ID and size in MB. Additionally, the time taken to build the image is calculated in seconds.
Once the Docker image is successfully built, the project is tested by executing the image as a

1The specific Dockerfile used for building Docker images from uploaded projects is shown in Figure C.1.

63

6. System Design and Implementation

container using the src folder, returning test execution results. This test step ensures that
the uploaded smart contract can pass all the tests. Detailed discussions on Docker image
execution and the derivation of results will be presented in the following section.

If the Docker container runs successfully (exiting with code 0) and the smart contracts pass
all the tests, the execution results are processed. Subsequently, the temporary folder is deleted
and both the image and container execution details are stored in the database. Conversely, if
any errors arise during these steps, the service initiates pruning, removing the Docker image
and any containers associated with image construction.

It is crucial to highlight that during the build process, Gas Snapshots are produced. As
elaborated in section 5.5, these capture the gas usage of the smart contracts provided by the
instructors and are later utilized to determine gas consumption differences when testing the
smart contract inputs of the students.

Executing Docker Images as Containers for Testing Uploaded Smart Contracts

The procedure for uploading smart contracts for testing closely resembles the initial steps
of project upload previously outlined – the uploaded zip file is unzipped, and its contents
are moved to a temporary directory. However, a noteworthy difference is that this zip file
only contains smart contracts, eliminating the need for any requisite file verification. In
addition, when uploading smart contracts, two additional parameters accompany the zip file:
the project name associated with the uploaded smart contracts and the project configuration,
which is optional and includes container timeout and test execution arguments, e.g., gas limit.

Initially, the database is queried using the specified project name. If no image can be found,
the service returns an HTTP "404 Not Found" status code. Otherwise, the uploaded zip file
is unzipped to a temporary folder containing smart contracts, the contents of which will be
used for running the Docker image as a container. Following that, a container is created using
the createContainer function from the Dockerode module. The temporary folder containing the
smart contracts is then copied into this container.

Once created, the container (Dockerode.Container) is started using the start function. Particu-
larly, the "snapshot difference" command from Foundry’s Forge is used instead of the default
command in the Dockerfile (as shown in Figure C.1). When executed with the specified test ar-
guments, this command ($ forge snapshot --silent -vv --allow-failure --json --diff <snapshot_file>)
outputs extensive information about the test results, keeps running the tests even if they
fail, and formats the results as JSON. Furthermore, this command runs tests, returns test
execution results, and compares gas consumption against the instructor-developed smart
contracts. Should there be any additional test execution arguments, like gas or memory limits,
they are appended to this command.

Following the container’s startup, another promise concurrently starts, resolving after a
designated timeout. If no specific container timeout is specified, a default value of 30 seconds
is used. These two promises race against each other in parallel. If the container’s execution
does not finish before the timeout promise resolves, a kill signal is sent to the container, which
then gets removed, and a timeout response is returned. This mechanism acts as a safeguard,
ensuring that inefficient smart contracts or those caught in an infinite loop have no adverse

64

6. System Design and Implementation

effect on the testing service, regardless of whether they were submitted to the service on
purpose or by accident.

Upon completion of the container’s execution, data such as the container name, Docker exit
code2, and its logs are collected. The container logs include either the test results or execution
errors, depending on the status of the test execution. Once the execution details are populated
into an object, the container is deleted. In the event of a successful execution, the logs are
processed to yield structured test execution results. Subsequently, an object containing the
execution details and the processed results is saved in the database. It is tagged with a
"Success" status if all tests pass, and a "Failure" status if they do not. Conversely, in the case of
an unsuccessful execution, an object with the error, labeled with a "Failure" status, is saved
in the database. Lastly, the temporary directory containing the uploaded smart contracts is
deleted.

The following section contains a detailed discussion on extracting test execution results
from container logs.

Extracting Test Execution Results from Container Logs

The container logs are returned in the form of a Buffer object when the Docker container is
executed. This is then converted into a string, which represents the console output when the
test execution command is executed within the container. To utilize this output effectively,
essential test results are extracted and saved within an object. If Docker exits with a non-zero
code, indicating an error during test execution, the container logs, which contain the error
messages, are saved directly to the database with the status "Failure". On the other hand,
if Docker exits with a success code of 0, it indicates that there were no execution errors,
indicating that the test results are to be processed further. However, a success code does not
necessarily indicate that all the tests have passed. This is decided after the container logs are
processed and a structured object containing the test results is derived from them.

The container logs are divided into two parts. The initial part contains a JSON string
with the results of the test execution. This encompasses data like the tests that passed or
failed, the gas consumed for each test, and any relevant logs. The latter part presents the
actual gas snapshot output, specifically highlighting gas differences when compared to the
instructor-developed solution for each test. Initially, any color codes and non-ASCII characters
in the Foundry’s test output are removed to facilitate processing. Subsequently, the JSON
part is parsed to remove any unnecessary information. After successfully parsing the JSON
part, additional data points such as the number of successful tests, failed tests, and total gas
consumption are computed. Furthermore, the overall test outcome is determined as either
"Success" or "Failure", depending on the success of all tests. Afterward, the gas snapshot
output in the second part is processed by utilizing regular expressions; the gas differences
and their respective percentage values are extracted for each test. Finally, all the extracted
data is merged into a single structured object that represents the test execution results and is
ready to be stored in the database or returned to the caller.

2For more information on Docker exit codes, refer to Table C.1.

65

6. System Design and Implementation

Figure 6.4.: Docker-In-Docker versus socket mounting (Source: [116])

Alternative to Using Docker-in-Docker

Running Docker within another Docker container is often referred to as Docker-in-Docker, or
DinD [116]. As briefly described in the previous sections, purely for performance reasons,
Test Runner uses the host machine’s Docker daemon to build and run images, as opposed
to Docker-in-Docker, which would instantiate a Docker daemon within the Test Runner
container itself. This is realized via socket mounting, where the Docker socket3 from the
host is mounted into the container, thereby allowing the Test Runner to generate "sibling"
containers on the host machine. Both of these approaches are illustrated in Figure 6.4.

Employing the host’s Docker daemon offers optimal performance, mainly because the
allocated resources come directly from the host rather than a Docker container. On the other
hand, using Docker-in-Docker allocates a volume to the /var/lib/docker directory, and
neglecting to remove this volume can quickly consume storage space when the container
is deleted [116]. Moreover, if the Test Runner were to unexpectedly terminate or fail, all
data associated with previously built images would be lost with the Docker-in-Docker setup,
which is not ideal. While such data can be preserved using methods like mounting the build
cache from the host, this approach can often have negative impacts [116]. Regardless, one of
the advantages of the Docker-in-Docker approach is its improved isolation, which can prove
invaluable in some circumstances [116].

In conclusion, considering the benefits and drawbacks of socket mounting versus the
Docker-in-Docker approach, leveraging the host’s Docker daemon via socket mounting is the
better choice due to its streamlined configuration, easier maintenance, and, most importantly,
increased efficiency. Therefore, socket mounting is employed in the Docker configuration for
the Test Runner [116].

3The Docker IPC socket, commonly found at /var/run/docker.sock, facilitates communication between the
client and daemon, though it can also be accessed through TCP or systemd-style sockets [116]. In this project,
the IPC socket is accessed through the file /var/run/docker.sock.

66

6. System Design and Implementation

6.4.3. Backend Services

The Backend Services function as the gateway to the testing service, offering its users with
specific REST endpoints to facilitate communication with the whole testing service. This
service is also Dockerized and integrated into the Docker Compose project. Developed also
in TypeScript, its key duties are communicating with the Test Runner through RabbitMQ for
smart contract testing, storing the data related to the educational use case in its database, and
ensuring that users gain appropriate access to the testing service based on authentication and
authorization levels. Like the Test Runner, it is built with the Express.js framework, but this
time it not only runs the service as a server but also exposes certain REST endpoints (refer to
Table D.1) to its users for communicating with the service. The following sections explore
how the functional requirements of the testing service are implemented.

Authentication and Authorization

One widely used technique for implementing authentication and authorization for the end-
user is the use of JWTs, which offers a robust and structured security mechanism that reduces
server overheads [117]. All the REST endpoints of the Backend Services are secured using
this technique, ensuring only authenticated users have API access. Moreover, with JWTs,
role-based access to specific APIs is facilitated through implemented middleware functions.
This not only increases the security of the service, but it also adheres to best practises in
backend service development.

Users can sign up for this service with their email address and a secure password; however,
for added security, only pre-registered admins can register other admins. Upon registration,
user information is saved in the database under the User collection, with the password hashed
before storage. Password hashing, which involves converting plaintext using algorithms such
as bcrypt or SHA, is critical in ensuring that compromised passwords remain unreadable to
potential adversaries [118]. This method ensures that hashed passwords cannot be decrypted.
To log in, users simply enter their registered email address and password; the service validates
the entered password by comparing it to the hashed version stored in the database.

Upon successful authentication, the service generates a JWT with user details, excluding
the password, as its payload. This JWT, signed with a specific secret, is set to expire after one
week by default within this service; though, this is adjustable. The method of securely signing
the JWT ensures the integrity of the token, making certain that it cannot be tampered with
in the absence of the corresponding secret. Additionally, the generated JWT is saved in the
response cookie, so that that any subsequent requests following the authentication contain
the JWT in the cookie.

Uploading Projects for Smart Contract Testing

Uploading a new project or updating an existing one involves submitting a zip folder with
the necessary project files, accompanied by the project name and its configuration. If there
is an existing project with the same name in the database, it is retrieved from the Project
collection; otherwise, a new project is created. The project configuration object is first added

67

6. System Design and Implementation

to the Project document, and then the uploaded zip file is saved in the Upload collection.
This connects the newly created or updated Upload document to the corresponding Project
document. These operations make use of database sessions and transactions. If any errors
arise, the transaction is immediately aborted. If everything goes smoothly, the transaction
is committed and the changes are saved in the database. Once a project is either created or
updated, its test status attribute is set to "Inconclusive", indicating that the project is being
uploaded to the Test Runner and the results remain pending.

Upon successful storage of the project in the database, a new message related to the project
upload is sent to a RabbitMQ fan-out exchange, ensuring all the consumers receive this
message. Further details of RabbitMQ and message queuing will be elaborated on in the
upcoming sections. Following the successful delivery of the message, the project response
is immediately returned from the endpoint. When the consumers, namely the Test Runner
instances, process this message and either create a new Docker image or modify an existing
one using the submitted zip file, a response message, encapsulating the test execution results
for the project upload, is sent to the reply queue. This reply queue was specified in the
project upload message when it was sent. The Backend Services, after dispatching the original
message, waits for messages in this reply queue. Upon receipt of the response, the stored
Project document is updated with the test execution results provided by the Test Runner.

Uploading Submissions for Smart Contract Testing

With a few exceptions, the process for uploading a new submission is very similar to that
of uploading a project. Particularly, a submission does not include a configuration, and it
is not allowed to update existing submissions; only new ones can be created. Just like the
project upload, the uploaded zip folder for the submission is stored in the Upload collection
and linked to the newly created Submission document. The test status attribute is set to
"Inconclusive", and a message is sent to the Test Runner via message queueing. However,
in this case, instead of using a RabbitMQ fan-out exchange, a simple RabbitMQ queue is
utilized since only one Test Runner instance will handle the message. The Test Runner then
executes tests against the uploaded smart contracts as previously described. After testing, it
communicates the results back to the Backend Services through a reply queue. The Submission
document is then updated with the results, mirroring the final steps of the project upload.

Listing Projects and Submissions

Projects and submissions are retrieved from the database based on their respective collections:
Project and Submission. The project details include attributes such as the project name, project
configuration, test status, and the deployer. For submissions, the returned details are the
associated project, test status, and the deployer. Additionally, the test execution results for
both these collections are included in the returned object.

The returned response is determined by the role of the authenticated user, which can be
either Admin or User, through the use of some implemented middleware functions. While both
roles have access to all projects, only admins are granted the ability to view all submissions.

68

6. System Design and Implementation

Users, on the other hand, can only access their own submissions. This ensures that, for
instance, students in the core use scenario cannot access or view their peers’ submissions,
thereby increasing the security of the whole testing service.

Editing and Removing Projects

A project provides two main modification options: editing and removal. Both functions are
only available to users with the Admin role. A project’s editing is divided into two distinct
processes: re-uploading and editing the configuration. When re-uploading, this action triggers
the creation of a new Docker image from the uploaded zip file. On the other hand, project
configuration can be edited separately. While it is possible to change the configuration by
re-uploading, there is also a specialized API just for configuration updates. With this API, the
configuration object must be included in the request body. The project is then retrieved from
the Project collection. If the retrieval fails, an HTTP "404 Not Found" status code is returned.
Otherwise, if the project is successfully retrieved, the project configuration is updated with
the provided configuration object.

The removal procedure, on the other hand, slightly requires more steps. Initially, the service
queries the database for the project. Once retrieved, any uploaded files associated with the
project are removed from the Upload collection. After successfully removing these files, the
project is removed from the Project collection. This procedure also employs database sessions
and transactions. Following these operations, since each project is linked to a specific Docker
image, the Test Runner must be informed of any project deletions. This is accomplished by
dispatching a deletion message to a RabbitMQ fan-out exchange, just like a project upload
message. The Test Runner, upon receiving this message, proceeds to delete the Docker image.
It must be noted that even if this deletion fails, the image will be deleted later during the
subsequent service pruning performed after each Docker operation in the Test Runner.

Downloading Uploaded Files

In earlier sections, it was mentioned how both projects and submissions are uploaded in the
form of zip files. Before the projects and submissions are stored in the database, the contents
of the uploaded zip files are unzipped, and a new record is created in the Upload collection.
This record is then linked to its respective project or submission.

To download the uploaded files, the associated project or submission is simply fetched from
the database, along with its corresponding uploaded files. As discussed in previous sections,
the uploaded files are stored as a structured list that includes path and content of each file.
Using this data, the contents of the uploaded files are converted into Buffer objects and added
to a zip file according to their specific paths. This assembled zip file is then converted back to
a single Buffer and returned as a downloadable response.

For all zip-related operations, the adm-zip [119] library is employed.

69

6. System Design and Implementation

Utilizing the Message Requests

Message requests serve a simple purpose: they log information about messages sent to
RabbitMQ. This includes details such as completion status, time taken, message content,
and so on. A new message request is created in the database after a message is sent to
RabbitMQ. When a message is received on one of the reply channels, its corresponding record
in the database is updated with the response message. Retrieving these message requests is
straightforward; the necessary records are fetched from the database. It is worth noting that
similar to the access controls applied to submissions, role-based authorization is also applied
for message requests. While admins can view all message requests, users are restricted to
accessing only the message requests created by them.

6.4.4. Message Queueing and Inter-Service Communication

Message queuing enables applications to communicate with one another by transporting data
messages in sequentially processed queues [54]. In this testing service, such communication
between the Test Runner and Backend Services is managed using message queuing. Advanced
Message Queuing Protocol (AMQP) is a protocol that employs high-level message queues to
ensure reliable data transfer between applications [120]. RabbitMQ, the message broker or
the messaging system utilized in this testing service, supports the AMQP protocol among
others [121].

Message queueing was selected as the communication method between the Test Runner
and Backend Services due to its ability to provide isolation, stability, and efficiency. Instead
of using REST APIs, the Backend Services, acting as the message producer, dispatches
messages to the Test Runner, the message consumer, without requiring knowledge of the
Test Runner’s specifics like host, port, or endpoints. This level of isolation simplifies the
development of both services, making sure that they remain independent. Furthermore,
message queueing also improves system stability and efficiency by setting constraints on
concurrent message processing. For instance, in the core use case where a large number of
students is expected to flood the system with requests during peak usage hours, uncontrolled
simultaneous processing could cause inefficiencies, bottlenecks, and slow down the system
due to suboptimal use of hardware resources and threads, potentially rendering the system
unavailable. By enforcing these limits, such problems can be avoided. In addition, RabbitMQ
enhances scalability through its ability to group multiple RabbitMQ instances across different
nodes to form a RabbitMQ cluster, facilitating load distribution based on node status [122].
Hence, a RabbitMQ instance is integrated into the Docker Compose project for the testing
service. This configuration provides communication, with the Backend Services sending
messages and the Test Runner consuming them.

As previously mentioned, the testing service is designed to allow horizontal scalability.
Although the details of its horizontal scaling will be discussed further in subsequent sections,
it is important to note that in the future, many Test Runner instances may be distributed
across various nodes. Hence, for clarity in this section, it is assumed that there are multiple
Test Runners.

70

6. System Design and Implementation

Figure 6.5.: RabbitMQ Techniques - Standard Queue (left) and Fan-out Exchange (right)

A compact library is developed to allow RabbitMQ communication between two services.
This library contains generic methods for sending, consuming, and awaiting replies from
designated reply queues. In the testing service, two types of communication techniques are
employed: a standard queue and a fan-out exchange, both of which are demonstrated in
Figure 6.5.

The standard queue technique represents the typical RabbitMQ message queuing mecha-
nism. Here, the Backend Services, acting as the message producer, sends messages to specific
queues, which are then received and processed by the Test Runner instances, the consumers.
Using this approach, only one Test Runner instance handles a message, selected based on
its current workload and capacity. For instance, consider a scenario where a consumer can
only process 10 messages simultaneously and there are two consumers: A and B. If consumer
A is already handling 10 messages, the next message will be directed to consumer B due to
A’s current workload. This method is used when sending a submission from the Backend
Services to the Test Runner, where it is sufficient that only a single Test Runner instance
processes the submission and executes the tests against the uploaded smart contracts.

In a fan-out exchange, on the other hand, a dispatched message from the producer is
received and processed by all consumers waiting messages on that exchange [121]. This
method is used for messages related to the projects. When a project is uploaded or deleted,
it is vital that all Test Runner instances update the state of the Docker daemon they are
responsible for, either by building a Docker image, updating an existing one, or removing it.

Whenever a message is sent to either a queue or a fan-out exchange, a new queue is created
to receive reply messages. The name of this queue is included with the dispatched message,
enabling the consumer(s) processing the message to send their results back to the producer.
This mechanism ensures that the Backend Services retrieves the test execution results from
the Test Runner after sending the uploaded projects or submissions.

Crucially, sending the message and not waiting for the response helps prevent blocking
the message producer service. This is of utmost important as there is no certainty regarding
how busy the queues are or how fast the messages will be processed. Moreover, the messages
in the queues are preserved even in the event of system failures. For instance, consider a

71

6. System Design and Implementation

scenario in the core use case where students may submit their correct smart contracts shortly
before a deadline. In such a case, students should still receive passing results, even if the
testing service momentarily fails and restarts. Finally, it is worth mentioning that by default,
a consumer can process up to 10 messages at a time, a threshold that can be modified if
necessary.

6.4.5. Service Network Configuration and Isolation

When a Docker container runs, it operates in isolation from its host. As a result, any
application running within this container on a given port is not directly accessible by the host
machine. To facilitate access, one can either bind a specific port on the host to the one used by
the application within the container, or deploy the container within a Docker bridge network.
In the latter scenario, containers connected to the same bridge network can communicate
with one another, enabling access to the application through its specific port. This is because
a bridge network employs a software bridge mechanism, allowing communication between
containers connected to that particular bridge network, while isolating them from containers
not connected to it [123].

Within the Docker Compose project for the testing service, multiple bridge networks have
been defined to isolate services from each other and external interactions. Only services
that need to communicate with one another are connected to the same bridge network,
adhering to best practices. Initially, each service and its corresponding MongoDB replicas
are connected to their own dedicated bridge network that no other service has access to.
This configuration ensures that an application’s database is accessible only by that specific
application. Moreover, there is a dedicated bridge network to which the RabbitMQ instance
and the two services are connected, ensuring the Backend Services can interact with the Test
Runner exclusively via RabbitMQ. Additionally, there is another bridge network that only the
Backend Services is connected to, allowing for potential access by client applications, such as
a frontend application. In summary, these Docker bridge networks are intentionally set up to
strengthen service security against external access and to ensure services operate within a
secure network environment.

6.4.6. Secret Management

The secrets for the testing service, such as the MongoDB URI and the JWT secret, must
be protected from unauthorized access. A common method for storing secrets is through
environment variables. However, this approach carries risks: secrets stored as environment
variables may be mistakenly exposed, and the contents of a .env file may be revealed during
debugging sessions. To address this concern, Docker provides a method called Docker
secrets for securely transmitting secrets to containers. This not only involves encrypting the
secrets but also ensures protection against unintentional leaks [124]. Hence, Docker secrets
were chosen as the preferable technique for handling and storing secrets for the testing
service. These secrets, which are defined within the Docker Compose project, are read from a
particular folder in the file path. This technique ensures that secrets are safely stored.

72

6. System Design and Implementation

6.4.7. Frontend Application

The Dockerized frontend application, which utilizes the Backend Services for its backend
operations, is built using the Vue.js framework. Although this application was primarily
developed to showcase the functionalities of the testing service, it still adheres to best practices
in web development. To achieve more flexible code organization, enhanced logic reuse, and
a reduced production bundle size, the Composition API, a recent addition to Vue, was
adopted [110]. Several reusable components have been implemented, ensuring a user-friendly
interaction with the testing service and simplifying maintainability for future developers.
Ultimately, a single-page web application was created using Vuetify [125], a UI framework
built on top of Vue.js.

Given that this frontend application is supplementary to the testing service library, the
details are avoided, leaving simply a brief summary. To view the final appearance of the
testing service with the frontend application, please see the screenshots in Appendix E.

6.5. Security and Stability

The testing service was built using Foundry, a test runner framework selected from a com-
parative analysis of various frameworks. These frameworks are typically used for more than
just testing; they are also used to deploy smart contracts. A smart contract project is often
tested (if tests are provided), and if all tests pass, the project is deployed. However, the testing
service designed in this work is exclusively dependent on the results of test executions, which
are generated after running the smart contracts against the tests in a Docker container.

Given that these test runner frameworks are used in this testing service in a manner they
were not originally designed for, the security and stability of the service must be considered.
This is especially vital in an educational context where instructors might make use of this
testing service to grade students. It becomes imperative to maintain the service’s integrity
at all times. Thus, the service must gracefully handle any errors or crashes that may occur
during contract executions to ensure its continuous availability, especially when students want
to submit their smart contract assignments. In addition, safeguards against potential system
overloads must be in place. Such overloads might be accidental, such as a sudden surge of
submissions during peak hours, or intentional, where the service could be bombarded with
a flood of requests to render it unavailable. The next subsections discuss how the testing
service was designed to address these considerations.

Regardless of these considerations, it is important to note that the testing service, deployed
as a Docker Compose project, leverages Docker’s error-handling capabilities. Specifically, if a
service within the testing service crashes, the corresponding container running the service
restarts due to the "restart" attribute being set to "unless-stopped" in the Docker Compose
configuration file. Hence, potential crashes in the service do not impact its availability.

73

6. System Design and Implementation

6.5.1. Handling Errors and Crashes in Contract Executions

The Test Runner, as previously stated, utilizes Docker containers for smart contract testing.
For each smart contract input submitted to the system, a new Docker container is started.
Since these containers operate within their isolated environments, any crash during the
contract execution will only terminate the specific container running that smart contract,
without affecting the service, the Test Runner, that spawns it. In addition, it is essential to
convey execution errors to the user, especially students in the core use case, to inform them
of potential mistakes in their smart contract inputs. This feedback mechanism allows them to
learn, correct their mistakes, and improve their smart contracts. Leveraging certain command-
line arguments from Foundry ensures that even in the event of an error, the contract execution
is not interrupted and the logs are returned back to the Test Runner upon successful container
execution. In summary, errors or crashes during contract executions have no negative impact
on the testing service, since every execution is encapsulated within its dedicated Docker
container.

6.5.2. Mitigating Accidental or Intentional System Overloads

System overloads can occur either by accident or on purpose. Regardless of the cause,
the integrity of the service must be maintained constantly. Initially, the Backend Services,
which serves as the primary gateway to the testing service, has a set of restrictions on the
number of requests originating from the same IP address. While this measure acts as an
additional safeguard, it is possible to improve the security even more by enforcing this limit
on authenticated users rather than just IP addresses. Such measures protect the service
against intentional system overloads, in which potential attackers may send an overwhelming
number of requests to the service, leading to their temporary access suspension.

Moreover, the Test Runner, which is responsible for smart contract testing, gets its inputs
from RabbitMQ, the message broker for this service that facilitates message queuing. The
amount of messages that the Test Runner can process at the same time is determined by a
predefined threshold. In situations where a system overload is not intentional and arises due
to a high volume of users, this will not destabilize the service but might extend wait times
for users. If these waiting times continually skew higher, it is not necessarily a security or
stability concern, but rather an indication that scaling is required, which will be discussed
further in the upcoming section.

On the other hand, the service may occasionally receive inefficient smart contract submis-
sions, such as a contract with a function that gets stuck in a loop or takes too much time
to return. To counteract such scenarios, various constraints have been set. As previously
mentioned, projects are submitted to the system along with container timeout values. This
timeout parameter is used to halt smart contract executions by terminating their associated
containers. This ensures that the service stays stable even when fed with potentially disruptive
smart contract inputs. Instructors may also apply additional limits, such as gas or memory
limits, which, if exceeded, result in an immediate termination of the execution of the smart
contracts.

74

6. System Design and Implementation

Figure 6.6.: Horizontal Scalability of the Testing Service

To conclude, the testing service is protected against both accidental and intentional system
overloads. It employs a variety of safeguards, including limiting users from sending an
excessive amount of concurrent requests, assuring that the service always stays available
through message queuing, and rapidly terminating the execution of inefficient smart contracts
that could otherwise harm the entire testing service.

6.6. Scalability

The testing service was implemented to efficiently handle a significant volume of concurrent
requests, specifically a simultaneous load of approximately 50 students on a single machine,
particularly during peak times such as the hours leading up to deadlines. Anticipating future
growth, especially with students from the BBSE course at TUM, which typically sees about
1000 registrations each semester, scalability emerges as a primary concern. Therefore, the
testing service was designed from the start with horizontal scalability in mind. This decision
is based on the limitations of vertical scaling as well as the observed performance improve-
ments of containerized applications, such as the testing service, when scaled horizontally
across distributed systems [126]. The design for the testing service’s horizontal scalability is
illustrated in Figure 6.6.

75

6. System Design and Implementation

6.6.1. Container Orchestration Tool: Kubernetes or Docker Swarm?

The initial consideration was the technology selection for system scalability, with the options
being two container orchestration tools: Kubernetes [127] and Docker Swarm. At first
glance, Docker Swarm stands out for its simplicity and user-friendliness, whereas Kubernetes,
although more complex, delivers advanced features such as self-healing and automated
scaling as standard [128]. While Kubernetes is generally considered superior and more
effective than Docker Swarm, its installation process is significantly more challenging and
its configuration demands more time [129]. Docker Swarm, on the other hand, enables the
seamless deployment of existing Docker Compose projects as "services" within the swarm. It
necessitates some modifications to the existing Docker Compose configuration and requires
images to be built and deployed to Docker Hub, a cloud-based registry for Docker images.
Yet, its simplicity aligns nicely with the scope and requirements of this testing service. Having
already packaged everything within a single Docker Compose project, Docker Swarm seems a
more appropriate choice than Kubernetes for this project. It also offers a built-in network for
facilitating load balancing among services [70]. Additionally, as Beltre et al. (2019) observed,
Kubernetes and Docker Swarm offer comparable performance, even for HPC workloads
[130], where performance is a decisive factor. Given Docker Swarm’s performance, which
is similar to that of Kubernetes, and its greater simplicity, it was chosen as the container
orchestration tool for this testing service. The service is ready for deployment to the swarm
with the addition of new nodes to the cluster. The current Docker Compose configuration is
geared for such scalability, needing only minor adjustments, like deploying each individual
service to Docker Hub. The complete system configuration, post-scaling with multiple nodes,
is demonstrated in Figure 6.6.

6.6.2. Database Considerations

In a single-node architecture, the Test Runner and Backend Services of the testing service
have their own dedicated databases. However, as the testing service grows horizontally,
adaptations to the database become unavoidable. As highlighted earlier, the testing service
was designed with horizontal scalability in mind. Consequently, this design decision naturally
influenced the data model and the architecture of each service within this testing service.

The Test Runner possesses its own database, storing the state of its associated Docker
daemon as well as a history of past executions. This makes sure that there is no need for
modifications when the service is horizontally scaled across multiple nodes; each Test Runner
instance can still maintain its distinct database, operating independently.

On the other hand, the database of the Backend Services records information on users,
projects, submissions, and uploads. It is vital that this data is accessible to every Backend
Services instance across the entire cluster. There are two main approaches to realize this. The
first method involves keeping the database within the Backend Services, where the database
of each instance must be deployed within the same replica set to maintain consistent state
and have the same data at all times. Additionally, implementing MongoDB sharding can
help distribute data throughout nodes in the cluster, with each node handling a data subset

76

6. System Design and Implementation

[131]. While this approach is feasible, it requires a complex configuration and is challenging
to manage. This complexity makes the second option, using a cloud database provider, more
appealing. MongoDB Atlas [132] stands out as such a provider, offering a high-performance
replicated MongoDB cluster on the cloud, with sharding capabilities. Given its user-friendly
setup and robust features, it was incorporated for this project. Besides, even the free tier
offers sufficient load balancing for the initial demands of this testing service. Using this cloud
database allows the instances of Backend Services across nodes to access the same shared
database. As illustrated in Figure 6.6, the Backend Services no longer operates its dedicated
database but instead leverages the cloud database supplied by MongoDB Atlas.

6.6.3. RabbitMQ Cluster

The testing service relies on the RabbitMQ message broker to manage inter-service communi-
cation. As the service scales horizontally, maintaining consistent communication within the
cluster becomes crucial. To ensure this, each RabbitMQ instance across different nodes must
be part of a unified cluster that effectively routes requests to the available Test Runners.

In this cluster of RabbitMQ instances, multiple nodes collaborate to function as a singular
message broker, distributing the workload efficiently [133]. This collaboration is made possible
through a shared secret known as the "Erlang cookie". By using this cookie, nodes authenticate
each other, enabling discovery and seamless communication [122]. By integrating this cookie
into the existing Docker Compose configuration, multiple RabbitMQ instances automatically
communicate with each other within the same Docker Swarm network, effectively acting as a
single message broker, as detailed in the RabbitMQ clustering guide [122]. When a message
is received by one of the RabbitMQ instances, it is distributed across all instances. Depending
on availability, the message is then processed by a Test Runner instance, which acts as the
message consumer. This approach ensures that message queuing in a horizontally scaled
testing service is efficiently managed across all nodes within the cluster.

6.6.4. Preparing New Nodes

When a new node is added to the cluster of testing services, it should be ready without the
need for any additional manual steps. As previously stated, the project-related operations
use a RabbitMQ fan-out exchange rather than queues. This makes sure that all Test Runner
instances across many nodes have the same Docker images for the projects. When a new node
joins the cluster, its associated Docker daemon initially lacks these images. However, it is
imperative that the Docker images corresponding to the projects in the database exist on this
new node. To address this, every time the Backend Services starts, they retrieve all projects
from the database, along with their respective uploaded files. Project creation messages are
then dispatched to the RabbitMQ fan-out exchange associated with project uploads. This
step guarantees that the Test Runner on that node creates the necessary Docker images. As a
result, any new node added to the cluster synchronizes its Docker state, ensuring a consistent
set of Docker images across all nodes.

77

6. System Design and Implementation

6.7. Deployment

The current state of the testing service is deployed to both showcase its features and improve
its testability. It was deployed on a machine within the TUM cluster, confirming the accuracy
and effectiveness of the deployment process detailed in the project documentation.

The GitHub repository4 of the web application associated with this service includes a
comprehensive README that offers in-depth instructions for setting up the service and
deploying it on any machine. As outlined in section 6.3, the entire service is encapsulated
within a Docker Compose project. In addition, the frontend project is Dockerized to sim-
plify deployability and is also encompassed within a Docker Compose project. Thus, the
only necessary installation is Docker, eliminating the need for system-specific software like
Nginx [134] or Apache [135]. Once Docker is set up, an environment variable file, named
.env.production.local, is all that is necessary for the service to be deployed and executed on a
machine. This file, whose structure is defined in the project documentation, specifies the host
name and port for the testing service. Additionally, once the service is up and running, it is
essential to ensure that the specified port is open for external access.

4https://github.com/erdenbatuhan/automated-smart-contract-tester-web

78

https://github.com/erdenbatuhan/automated-smart-contract-tester-web

7. Results and Evaluation

This chapter evaluates the developed testing service by focusing on its security and stability,
followed by an assessment of its efficiency and performance when subjected to simultaneous
system loads.

7.1. Security and Stability

As explored in section 6.5, the testing service was designed to be robust against external
threats and stable, ensuring optimal availability. To evaluate the service’s security and stability,
the following tests were conducted:

• High-Volume Request Test: The system was subjected to a large volume of requests
during this test. A rate limit was configured to allow only 50 requests from the same IP
address within a 2-minute window. Following that, 100 requests were submitted to the
service. The system processed the first 50 requests and blocked the rest, successfully
ensuring the service’s stability.

• Faulty Contract Submission Test: The service was tested with two sorts of smart
contract inputs: one that fails to compile and another that causes a custom error through
a revert operation. The system returned the proper error messages in the container
execution output, therefore neither input compromised the service’s stability. The
submissions were successfully stored in the database, along with their respective error
messages (see Figure E.8 and Figure E.9).

• Infinite Loop Security Test: The service was tested using a smart contract designed
with a function containing an infinite loop. The service’s stability remained unaffected
by this input because it successfully returned a timeout response after a predetermined
interval, matching either the container timeout specified during project upload or the
default container timeout value (see Figure E.10).

• Gas Limit Compliance Test: During this test, a new project was initially uploaded to
the service with a predefined gas limit of 7 million. The smart contract input to be
submitted was then modified to include a loop, purposefully extending the function’s
execution to consume more gas than the limit specified. Upon submission, the system’s
stability was not compromised, and it responded by including an error message in the
test execution results indicating that the gas limit had been exceeded. This safeguard
measure is provided inherently by Foundry, the test runner framework selected for
smart contract testing (see Figure E.11).

79

7. Results and Evaluation

Table 7.1.: Total Processing Time for Simultaneous Execution of All Submissions

Number of Simultaneous
Submissions

Hardware Setting

10-core CPU 2-core CPU

1 2.18s 4.17s
10 4.84s 21.72s
20 11.96s 42.01s
50 21.29s 103.25s
100 42.79s 209.44s
250 99.68s > 500s
500 209.30s > 500s

7.2. Efficiency and Performance

The core use case of the testing service is crucially dependent on its efficiency to manage a
substantial user load. To this end, a comprehensive performance evaluation was conducted
using a machine1 equipped with a 10-core CPU. The assessment measured the median time
required (over a series of 10 runs) for the testing service to process and return test execution
results for simultaneous submission requests, ranging in size from 1 to 500. These requests
were sent consecutively to the submission endpoint, each without waiting for the response.

The evaluation results, presented in Table 7.1, demonstrate that the testing service, running
on a machine with a 10-core CPU, effectively managed 250 and even 500 simultaneous
submissions. However, receiving more than 50 submissions at the same time is unexpected,
even with an active user base of 500 to 1000. Thus, the service’s capability to efficiently process
up to 50 concurrent submissions in roughly 20 seconds is quite promising, considering the
improbability of encountering higher numbers of parallel submissions. Nevertheless, should
the need arise to handle the load of more simultaneous submissions during peak periods,
the service would require horizontal scaling to distribute the load across multiple nodes.
Additionally, the efficacy of the message queuing mechanism is evident, as processing a
single submission takes about 2 seconds, and processing 50 times more submissions takes
only about 10 times longer, demonstrating an efficient distribution of the workload.

Additionally, the same evaluation was replicated on a separate machine2, where the testing
service had been deployed to verify deployability. As detailed in Table 7.1, the 2-core CPU
of this machine proved insufficient for such a demanding load, taking approximately 4.17
seconds for a single submission, 21.72 seconds for 10, and 103.25 seconds for 50 simultaneous
submissions. In contrast, the machine with a 10-core CPU had handled all 500 concurrent
submissions seamlessly, though requiring about 200 seconds to return all test execution
results. These findings suggest that a little increase in resources, specifically a minimum of 5
CPU cores, may be necessary to meet the service’s performance expectations.

1Apple M1 Pro (2021, 10-core CPU, 16 GB RAM).
2A machine with 2 CPU cores allocated from an Intel® Xeon® CPU E5-2697A v4 @ 2.60GHz and 4 GB RAM.

80

8. Conclusion

The final chapter of the thesis provides a summary of the work, explaining how each research
question has been addressed. It also offers a discussion of potential directions for future work
and outlines the project’s documentation to facilitate further development if necessary.

8.1. Summary

In conclusion, a testing service has been developed that meets the functional requirements
outlined in subsection 6.1.2. This platform not only adheres to the non-functional criteria
described in subsection 6.1.3 but also facilitates automated smart contract unit testing for
instructors and students within the core use case, as outlined in section 1.4.

Initially, RQ01 was addressed by discussing the requirements for automated smart contract
unit testing in an educational context, including the core use case (RQ01-a) and exemplary
exercises (RQ01-b). In the core use case, instructors provide students with exercises to assess
their problem-solving abilities, and students receive feedback on how their submitted smart
contract inputs perform against instructor-provided tests, aiding in their development of
more effective smart contracts.

The chapters, chapter 2 and chapter 3, addressed RQ02 by exploring the current state
of automated smart contract testing. These chapters investigated sub-questions RQ02-a,
which examined examples of smart contract testing services, and RQ02-b, which focused on
identifying the most commonly used test runner frameworks for this purpose, specifically
Truffle, Hardhat, and Foundry.

Following a thorough discussion about the adopted methodology in chapter 4, a compar-
ative analysis in chapter 5 evaluated the test runner frameworks based on their usability,
development experiences, feature sets, provided metrics, and performance in both container-
ized and non-containerized environments. This analysis, which distinguished test runner
frameworks by their key features and performance assessment capabilities, addressed RQ02-c,
concluding with Foundry being the most suitable one, followed by Hardhat and Truffle.

A comprehensive discussion in chapter 6 on the design and implementation of the testing
service, utilizing Foundry as the test runner framework for smart contract testing, addressed
RQ04 through exploring the development of an automated smart contract unit testing
platform for educational feedback. Security and stability considerations, pivotal to RQ03,
were addressed by outlining strategies to manage contract execution crashes (RQ03-a) and to
prevent system overloads, whether intentional or unintentional (RQ03-b). Additionally, the
design for scalability and expansion to accommodate potential user growth was detailed in
section 6.6, responding to RQ04-a.

81

8. Conclusion

The assessment process included extensive testing to corroborate the service’s security and
stability, as explained in section 7.1. The service’s performance evaluation, as documented
in section 7.2, demonstrated that it could withstand a heavy user load efficiently. Data in
Table 7.1 confirmed the service’s capability to handle significant numbers of concurrent users,
maintaining good performance even with 250 and 500 simultaneous requests.

In essence, the testing service developed effectively fulfills all the established functional
and non-functional requirements, offering students and instructors within the core use case
a service for automated smart contract testing with a user-friendly user interface. This
application is secure, stable, and performs efficiently, offering a smooth user experience. For a
visual representation of the user interface, refer to the screenshots provided in Appendix E.

8.2. Future Work

The testing service has been designed to support potential extensions and enhancements,
accompanied by comprehensive documentation to ease future development. Details on the
documentation are further elaborated in section 8.3. Subsequent paragraphs will explore the
integration of some potential new features into the testing service as part of future work.

Currently, user authentication within the testing service is managed via JWTs, allowing for
open user registration with admin roles assigned by existing admins. Many educational insti-
tutions already have established authentication services that can be effortlessly incorporated
into the testing service. This could be done by either replacing the current authentication sys-
tem or by adding a middleware microservice that handles authentication, thus streamlining
the login process and automatically assigning the correct roles to instructors and students. For
instance, TUM employs its own authentication system, which could be securely integrated
into the service for authenticating its instructors and students.

Furthermore, the implementation of a leaderboard to rank students based on their smart
contract input performance could provide continual incentives for students to improve their
contracts. This feature would promote a culture of continuous development, encouraging
students to optimize their smart contracts beyond simply passing the test cases.

Moreover, the proposed addition of graphs to the frontend application would enhance the
visualization of performance results, effectively complementing the detailed performance
data provided in tables. As Boers (2018) emphasizes, graphical representations are optimal for
communicating large amounts of data and facilitating the identification of trends, but tables
excel at displaying smaller amounts of data and demonstrating simple relationships between
variables [136]. Therefore, incorporating graphs to summarize the performance results, which
are currently presented in tables, could speed up comprehension for the users, allowing them
to quickly grasp the results without the need to carefully analyze tables.

Finally, the testing service could be improved by offering a selection of various test runner
frameworks, allowing users to choose the one that best fits their needs. Such an enhancement
could attract additional educational institutions that have existing exercises utilizing other
test runner frameworks like Truffle or Hardhat, as opposed to Foundry. Providing this choice
would streamline the process for these institutions to transition to using this testing service.

82

8. Conclusion

8.3. Documentation and Continued Maintenance

The setup of the testing service has been carefully designed to provide future developers with
a smooth experience in understanding the code base and releasing new features. The GitHub
repositories for the testing service offer extensive documentation on how to set up and run
the testing service from scratch, and potentially contribute to it in the future. Separate setup
guides are available for both the testing service and the frontend application. These include a
range of steps, such as managing secrets, building Docker images, starting Docker containers,
clearing Docker resources, and purging the database and RabbitMQ data. They also cover
optional tasks such as overriding application properties. Moreover, a Postman Workspace is
provided to act as a quick reference for endpoints and their application. Through a custom
script, this workspace is populated with example data for requests. Additionally, each of
the services within the testing service can be run independently by following the specific
instructions created for them, allowing them to operate separately when required. Finally,
the deployment process is also covered in detail, as briefly mentioned in section 6.7.

The testing service was developed in adherence to current best practices, which enhanced
its code quality and maintainability. Tools such as ESLint [137] and Prettier [138] have been
employed to elevate the code’s quality. These tools are configured alongside Husky [139],
which uses pre-commit hooks to trigger ESLint and Prettier via lint-staged [140] prior to each
commit. This guarantees that the code changes meet the predefined quality standards. For
optimal results, developers are advised to integrate ESLint into their preferred Integrated
Development Environments (IDEs) for real-time linting notifications.

83

A. Sample Solidity Test Cases

The code snippet presented in Listing A.1 provides an example of a Solidity test case from
the BBSE Bank 2.0 project utilizing the Foundry framework. This particular test is designed
to confirm the success of a deposit transaction within the bank. It accomplishes this by
conducting a series of checks: it starts by depositing Ether into the bank, proceeds to validate
that the account has been correctly registered as an investor at the bank with an active deposit,
and concludes by ensuring that the balance of the bank has been updated correctly.

1 // A helper function to deposit Ether into the bank from a specified user address
2 function depositToBank(address userAddr, uint256 amount) internal {
3 vm.roll(block.number + 1); // Increment block number by 1 to simulate a chain
4 vm.prank(userAddr); // Inject a change of user
5 vm.deal(userAddr, amount); // Deal Ether to that user
6

7 bbseBank.deposit{value: amount}(); // Deposit
8 }
9

10 // Test to verify that deposits are processed correctly
11 function test_3_SucceedIf_DepositSucceeds() public {
12 // Deposit Ether into the bank
13 uint256 depositAmount = 1 ether;
14 depositToBank(address(FIRST_ACC_ID), depositAmount);
15

16 // Check the account has been correctly registered as an investor at the bank
17 // after the deposit
18 (bool hasActiveDeposit, uint256 investorAmount, uint256 investorStartTime) =
19 bbseBank.getInvestor(address(FIRST_ACC_ID));
20 assertTrue(investorHasActiveDeposit,
21 "The investor should have an active deposit");
22 assertEq(investorAmount, depositAmount,
23 "The investor’s deposited amount should match the expected value");
24 assertGt(investorStartTime, 0,
25 "The investor’s start time should be recorded and greater than 0");
26

27 // Check if the balance of the bank has been updated correcly after the deposit
28 assertEq(address(bbseBank).balance, depositAmount,
29 "The bank’s balance should increase by the amount of the deposit");
30 assertEq(bbseBank.totalDepositAmount(), depositAmount,
31 "The bank’s total deposit amount should match the amount deposited");
32 }

Listing A.1: Example Solidity Test Case - Verifying Successful Deposit

84

B. Performance Figures of Test Runner
Frameworks

The following graphs serve to visually demonstrate the performance of the test runner
frameworks: Truffle, Hardhat, and Foundry. While the performance metrics are presented in
tables within the thesis, these graphs provide a visual representation that may enhance the
understanding of the data and reveal underlying trends.

For a comprehensive examination of the results corresponding to Figure B.1, refer to
section 5.6.

Figure B.1.: Test Execution Times of Different Frameworks (seconds)

85

B. Performance Figures of Test Runner Frameworks

B.1. Containerization

For an in-depth analysis of the results corresponding to Figure B.2 and Figure B.3, see
subsection 5.7.4.

Figure B.2.: Vending Machine - Test Execution Times (seconds)

Figure B.3.: BBSE Bank 2.0 - Test Execution Times (seconds)

86

B. Performance Figures of Test Runner Frameworks

B.2. Scalability Capabilities

For detailed information on the results corresponding to Figure B.4, consult subsection 5.7.5.

Figure B.4.: BBSE Bank 2.0 - Test Execution Times with Different Number of CPUs (seconds)

87

C. In-depth Docker Configurations

This chapter offers supplementary information on Docker, including aspects like Docker exit
codes, and presents in-depth information on the specific Docker configurations used in this
project, such as Dockerfiles.

C.1. Dockerfile for Project Image Creation

Presented in Figure C.1 is the Dockerfile used to create Docker images from the uploaded
exercises or projects.

Figure C.1.: Dockerfile Utilized for Project Image Creation

88

C. In-depth Docker Configurations

C.2. Docker Exit Codes

Various exit codes in Docker describe the status or cause for a container’s termination. These
exit codes along with their respective descriptions are listed in Table C.1.

Table C.1.: Docker Exit Codes
Exit Code Description

0 Purposely stopped
1 Application error or incorrect reference

125 Container failed to run error
126 Command invoke error
127 File or directory not found
128 Invalid argument used on exit
134 Abnormal termination (SIGABRT)
137 Immediate termination (SIGKILL)
139 Segmentation fault (SIGSEGV)
143 Graceful termination (SIGTERM)
255 Exit status out of range

Source: [141]

89

D. Listing of REST Endpoints

This chapter provides a list of REST Endpoints exposed by the microservices in the testing
service, which are essential for inclusion in this thesis.

D.1. Endpoints for Backend Services

The available REST endpoints of the Backend Services are listed in Table D.1. It is important
to note that all these endpoints are prefixed with:
/api/automated-smart-contract-tester/services/v1

Table D.1.: REST Endpoints for Backend Services
Description Method Endpoint (with Path Variables)
Healthcheck GET /healthcheck
Signup POST /auth/signup
Login POST /auth/login
Logout GET /auth/logout
Get all users GET /users
Get a specific user GET /users/:userId
Delete a user DELETE /users/:userId
Get test execution args GET /projects/descriptions/test-execution-arguments
Get all projects GET /projects
Get a specific project GET /projects/:projectName
Upload a new project POST /projects/:projectName/upload
Update an existing project PUT /projects/:projectName/upload
Update project config PUT /projects/:projectName/update
Download a project GET /projects/:projectName/download
Delete a project DELETE /projects/:projectName
Get all submissions GET /projects/:projectName/submissions
Get a specific submission GET /projects/:projectName/submissions/:submissionId
Upload a submission POST /projects/:projectName/submissions
Download a submission GET /projects/:projectName/submissions/:submissionId/download
Delete a submission DELETE /projects/:projectName/submissions/:submissionId
Get all message requests GET /message-requests
Get a message request GET /message-requests/:messageRequestId

90

E. Testing Service Screenshots

The accompanying screenshots illustrate the primary features of the final testing service on
the frontend application. The user experience begins with the login screen, displayed in
Figure E.1 (the signup interface is identical). Uploading a new project and a submission are
illustrated in Figure E.2 and Figure E.3, respectively. Listing previously uploaded projects and
submissions are demonstrated in Figure E.4 and Figure E.5, consecutively. The test execution
results for a submission can be analyzed, as shown in Figure E.6, which exhibits a submission
with 25 passing and 2 failing tests and a gas consumption difference of +0.56%, indicating a higher
total gas usage compared to the reference contracts, a negative outcome. This figure also
shows the gas consumption and difference per test. Furthermore, user feedback is provided
through custom alerts, an example of which is presented in Figure E.7 following a submission
download.

For an in-depth view of the test results for faulty and successful submissions, refer to
section E.1 and section E.2.

Figure E.1.: Logging into the Testing Service

91

E. Testing Service Screenshots

Figure E.2.: Uploading a New Project

Figure E.3.: Uploading a New Submission

92

E. Testing Service Screenshots

Figure E.4.: Viewing Uploaded Projects

Figure E.5.: Viewing Uploaded Submissions

93

E. Testing Service Screenshots

Figure E.6.: Test Execution Results for a Submission

Figure E.7.: Success Alert Displayed after Downloading a Submission

94

E. Testing Service Screenshots

E.1. Analysis of Faulty Submissions

The presented figures serve as visual aids for analyzing faulty submissions on the testing
service. Each figure corresponds to a unique error scenario encountered during test execution.

Initially, Figure E.8 showcases a submission with failing tests, and detailed error messages
are accessible by hovering over each failed test’s indicator.

Figure E.8.: Failed Submission - Test Execution with Failing Tests

Additionally, Figure E.9 illustrates a submission that resulted in a contract error where the
contract reverted with an error, with detailed information accessible upon hovering over the
associated failed test.

Figure E.9.: Failed Submission - Test Execution with Contract Error

95

E. Testing Service Screenshots

Furthermore, Figure E.10 presents a submission that exceeded the time limit. The project’s
time limit was set to 20 seconds, and the showcased submission timed out at this limit. This
particular test case contained a smart contract with an infinite loop to intentionally cause a
timeout, also testing the stability of the service against inefficient smart contract inputs.

Figure E.10.: Failed Submission - Test Execution Timeout

Lastly, Figure E.11 displays a submission that fails due to excessive gas consumption. The
test exceeded the project’s gas limit, which is indicated by a message displayed upon hover,
while the gas usage values are presented in adjacent columns, thus evaluating the testing
service’s adherence to gas limits.

Figure E.11.: Failed Submission - Test Execution with Excessive Gas Usage

96

E. Testing Service Screenshots

E.2. Analysis of Successful Submissions

The test execution results for an exemplary successful submission are shown in Figure
Figure E.12, illustrating a scenario where all tests have passed and gas consumption is
identical to the smart contracts originally uploaded with the project. Although a submission
consuming the exact same amount of gas as the solution is a rare case, for the demonstration
of a perfect submission, the very same contracts provided with the project were used as a
submission in this test case.

Figure E.12.: Successful Submission - Test Execution with All Passing Tests

97

List of Abbreviations

ABI Application Binary Interface. 26

AMQP Advanced Message Queuing Protocol. 70

BBSE Blockchain-based Systems Engineering. iii, 1, 3, 5, 27, 75

CI Continuous Integration. 27

CMS Content Management System. 20

DAO Decentralized Autonomous Organization. 2

dApp Decentralized Application. 1, 2, 7, 9, 12, 20, 25, 27

EVM Ethereum Virtual Machine. 10, 20, 26, 27, 33, 39

GUI Graphical User Interface. 38, 51, 52

HPC High Performance Computing. 20, 76

IDE Integrated Development Environment. 83

JWT JSON Web Token. 22, 60, 67, 72, 82

npm Node Package Manager. 24–26, 28, 30, 32, 43, 45

OS Operating System. 14–16

PoW Proof of Work. 8, 9

REPL Read-Eval-Print Loop. 27

SaaS Software as a Service. 17

SEBIS Software Engineering for Business Information Systems. iii

TUM Technical University of Munich. 1, 5, 18, 27, 75, 78, 82

UML Unified Modeling Language. 57

VM Virtual Machine. 14–16, 20, 100

98

List of Figures

2.1. The Functioning of Blockchain Technology (Source: [2]) 8
2.2. The Client-server Architecture of Docker (Source: [46]) 16

5.1. Forge (Foundry) vs. Hardhat - Compilation of uniswap/v3-core (Source: [41]) 26

6.1. High-level Sequence Diagram for Exercise Upload & Code Submission 58
6.2. The Architecture of the Testing Service . 59
6.3. Data Model of the Testing Service . 61
6.4. Docker-In-Docker versus socket mounting (Source: [116]) 66
6.5. RabbitMQ Techniques - Standard Queue (left) and Fan-out Exchange (right) . 71
6.6. Horizontal Scalability of the Testing Service . 75

B.1. Test Execution Times of Different Frameworks (seconds) 85
B.2. Vending Machine - Test Execution Times (seconds) 86
B.3. BBSE Bank 2.0 - Test Execution Times (seconds) 86
B.4. BBSE Bank 2.0 - Test Execution Times with Different Number of CPUs (seconds) 87

C.1. Dockerfile Utilized for Project Image Creation 88

E.1. Logging into the Testing Service . 91
E.2. Uploading a New Project . 92
E.3. Uploading a New Submission . 92
E.4. Viewing Uploaded Projects . 93
E.5. Viewing Uploaded Submissions . 93
E.6. Test Execution Results for a Submission . 94
E.7. Success Alert Displayed after Downloading a Submission 94
E.8. Failed Submission - Test Execution with Failing Tests 95
E.9. Failed Submission - Test Execution with Contract Error 95
E.10. Failed Submission - Test Execution Timeout . 96
E.11. Failed Submission - Test Execution with Excessive Gas Usage 96
E.12. Successful Submission - Test Execution with All Passing Tests 97

99

List of Tables

2.1. Comparison between VMs and Containers . 15

5.1. Compilation & Test Execution Times of Frameworks 41
5.2. BBSE Bank 2.0 - Image Sizes with Containerization Versions 45
5.3. Test Execution Times with Containerization Versions 46
5.4. BBSE Bank 2.0 - Test Execution Times with CPU Core Counts 49

7.1. Total Processing Time for Simultaneous Execution of All Submissions 80

C.1. Docker Exit Codes . 89

D.1. REST Endpoints for Backend Services . 90

100

Listings

2.1. A contract to deposit/withdraw funds and verify account balances (Source: [31]) 11

5.1. Several Important Functions in JavaScript with Truffle 29
5.2. Several Important Functions in JavaScript with Hardhat 31
5.3. Defining Foundry’s Cheatcodes Interface . 34
5.4. Several Important Functions in Solidity with Foundry 35

A.1. Example Solidity Test Case - Verifying Successful Deposit 84

101

Bibliography

[1] F. A. Sunny, P. Hajek, M. Munk, M. Z. Abedin, M. S. Satu, M. I. A. Efat, and M. J.
Islam. “A Systematic Review of Blockchain Applications”. In: IEEE Access 10 (2022),
pp. 59155–59177. doi: 10.1109/ACCESS.2022.3179690.

[2] R. Zhang, R. Xue, and L. Liu. “Security and privacy on blockchain”. In: ACM Computing
Surveys (CSUR) 52.3 (2019), pp. 1–34.

[3] K. Wu, Y. Ma, G. Huang, and X. Liu. “A first look at blockchain-based decentralized
applications”. In: Software: Practice and Experience 51.10 (2021), pp. 2033–2050. doi:
https://doi.org/10.1002/spe.2751. eprint: https://onlinelibrary.wiley.com/
doi/pdf/10.1002/spe.2751. url: https://onlinelibrary.wiley.com/doi/abs/10.
1002/spe.2751.

[4] The Chair of Software Engineering for Business Information Systems at TUM. Blockchain-
based Systems Engineering. https://wwwmatthes.in.tum.de/pages/enf3vo4lqv74/
Blockchain-based-Systems-Engineering. Accessed: November 10, 2023.

[5] A. Alkhajeh. Blockchain and smart contracts: The need for better education. Rochester
Institute of Technology, 2020.

[6] A. Hughes, A. Park, J. Kietzmann, and C. Archer-Brown. “Beyond Bitcoin: What
blockchain and distributed ledger technologies mean for firms”. In: Business Hori-
zons 62.3 (2019), pp. 273–281. issn: 0007-6813. doi: https://doi.org/10.1016/j.
bushor.2019.01.002. url: https://www.sciencedirect.com/science/article/pii/
S0007681319300023.

[7] E. J. De Aguiar, B. S. Faiçal, B. Krishnamachari, and J. Ueyama. “A survey of blockchain-
based strategies for healthcare”. In: ACM Computing Surveys (CSUR) 53.2 (2020), pp. 1–
27.

[8] M. Foth. “The promise of blockchain technology for interaction design”. In: Proceedings
of the 29th Australian conference on computer-human interaction. 2017, pp. 513–517.

[9] S. Nakamoto. “Bitcoin: A Peer-to-Peer Electronic Cash System”. In: Available at: https:
// bitcoin. org/ bitcoin. pdf (2008). Accessed: October 2, 2023.

[10] R. M. Parizi, A. Dehghantanha, K.-K. R. Choo, and A. Singh. “Empirical vulnerability
analysis of automated smart contracts security testing on blockchains”. In: arXiv
preprint arXiv:1809.02702 (2018).

[11] V. Buterin. “A next-generation smart contract and decentralized application platform”.
In: White paper 3.37 (2014), pp. 2–1.

102

https://doi.org/10.1109/ACCESS.2022.3179690
https://doi.org/https://doi.org/10.1002/spe.2751
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2751
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.2751
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2751
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.2751
https://wwwmatthes.in.tum.de/pages/enf3vo4lqv74/Blockchain-based-Systems-Engineering
https://wwwmatthes.in.tum.de/pages/enf3vo4lqv74/Blockchain-based-Systems-Engineering
https://doi.org/https://doi.org/10.1016/j.bushor.2019.01.002
https://doi.org/https://doi.org/10.1016/j.bushor.2019.01.002
https://www.sciencedirect.com/science/article/pii/S0007681319300023
https://www.sciencedirect.com/science/article/pii/S0007681319300023
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf

Bibliography

[12] G. Wood. “Ethereum: A secure decentralised generalised transaction ledger”. In:
Ethereum project yellow paper 151.2014 (2014), pp. 1–32.

[13] S. Bragagnolo, H. Rocha, M. Denker, and S. Ducasse. “SmartInspect: solidity smart con-
tract inspector”. In: 2018 International workshop on blockchain oriented software engineering
(IWBOSE). IEEE. 2018, pp. 9–18.

[14] S. Rouhani and R. Deters. “Security, Performance, and Applications of Smart Contracts:
A Systematic Survey”. In: IEEE Access 7 (2019), pp. 50759–50779. doi: 10.1109/ACCESS.
2019.2911031.

[15] B. K. Mohanta, S. S. Panda, and D. Jena. “An overview of smart contract and use
cases in blockchain technology”. In: 2018 9th international conference on computing,
communication and networking technologies (ICCCNT). IEEE. 2018, pp. 1–4. doi: 10.1109/
ICCCNT.2018.8494045.

[16] E. Sunday. Top 5 smart contract programming languages for blockchain. https://blog.
logrocket.com/smart-contract-programming-languages/. Accessed: November 03,
2023. 2021.

[17] H. Zhou, A. Milani Fard, and A. Makanju. “The state of ethereum smart contracts
security: Vulnerabilities, countermeasures, and tool support”. In: Journal of Cybersecurity
and Privacy 2.2 (2022), pp. 358–378. issn: 2624-800X. doi: 10.3390/jcp2020019. url:
https://www.mdpi.com/2624-800X/2/2/19.

[18] D. Perez and B. Livshits. “Broken metre: Attacking resource metering in EVM”. In:
arXiv preprint arXiv:1909.07220 (2019).

[19] C. Jentzsch. “Decentralized autonomous organization to automate governance”. In:
White paper, November (2016).

[20] M. Rodler, W. Li, G. O. Karame, and L. Davi. “Sereum: Protecting existing smart
contracts against re-entrancy attacks”. In: arXiv preprint arXiv:1812.05934 (2018).

[21] I. Puddu, A. Dmitrienko, and S. Capkun. µchain: How to Forget without Hard Forks.
Cryptology ePrint Archive, Paper 2017/106. https://eprint.iacr.org/2017/106.
2017. url: https://eprint.iacr.org/2017/106.

[22] Docker, Inc. “Docker”. In: lınea].[Junio de 2017]. Disponible en: https://www.docker.com/what-
docker (2020).

[23] C. Dannen. Introducing Ethereum and Solidity. Vol. 1. Springer, 2017.

[24] Rainberry, Inc. BitTorrent. https://www.bittorrent.com. Accessed: November 5, 2023.

[25] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf, and S. Capkun. “On
the security and performance of proof of work blockchains”. In: Proceedings of the 2016
ACM SIGSAC conference on computer and communications security. 2016, pp. 3–16.

[26] F. A. Aponte-Novoa, A. L. S. Orozco, R. Villanueva-Polanco, and P. Wightman. “The
51% attack on blockchains: A mining behavior study”. In: IEEE Access 9 (2021),
pp. 140549–140564.

103

https://doi.org/10.1109/ACCESS.2019.2911031
https://doi.org/10.1109/ACCESS.2019.2911031
https://doi.org/10.1109/ICCCNT.2018.8494045
https://doi.org/10.1109/ICCCNT.2018.8494045
https://blog.logrocket.com/smart-contract-programming-languages/
https://blog.logrocket.com/smart-contract-programming-languages/
https://doi.org/10.3390/jcp2020019
https://www.mdpi.com/2624-800X/2/2/19
https://eprint.iacr.org/2017/106
https://eprint.iacr.org/2017/106
https://www.bittorrent.com

Bibliography

[27] Bitcoin Gold. Bitcoin Gold. https://bitcoingold.org. Accessed: November 5, 2023.

[28] Hacken and B. Barwikowski. 51% Attack: The Concept, Risks & Prevention. https:
//hacken.io/discover/51-percent-attack. Accessed: November 5, 2023.

[29] F. Kochan. What is the Ethereum Virtual Machine (EVM)? https://www.quicknode.
com/guides/ethereum- development/getting-started/what- is- the-ethereum-
virtual-machine-evm. Accessed: November 5, 2023.

[30] L. Burkholder. “The halting problem”. In: ACM SIGACT News 18.3 (1987), pp. 48–60.

[31] M. Wöhrer and U. Zdun. “Smart contracts: security patterns in the ethereum ecosystem
and solidity”. In: 2018 International Workshop on Blockchain Oriented Software Engineering
(IWBOSE). IEEE. 2018, pp. 2–8.

[32] M. Barboni, A. Morichetta, and A. Polini. “Smart contract testing: challenges and
opportunities”. In: Proceedings of the 5th International Workshop on Emerging Trends in
Software Engineering for Blockchain. 2022, pp. 21–24.

[33] W. Zou, D. Lo, P. S. Kochhar, X.-B. D. Le, X. Xia, Y. Feng, Z. Chen, and B. Xu. “Smart
contract development: Challenges and opportunities”. In: IEEE Transactions on Software
Engineering 47.10 (2019), pp. 2084–2106.

[34] G. A. Pierro, R. Tonelli, and M. Marchesi. “An organized repository of ethereum smart
contracts’ source codes and metrics”. In: Future internet 12.11 (2020), p. 197.

[35] ConsenSys Software Inc. Truffle Suite. https://trufflesuite.com. Accessed: July 25,
2023.

[36] Nomic Labs LLC. Hardhat. https://hardhat.org. Accessed: July 27, 2023.

[37] L. Palechor and C.-P. Bezemer. “How are Solidity smart contracts tested in open source
projects? An exploratory study”. In: Proceedings of the 3rd ACM/IEEE International
Conference on Automation of Software Test. 2022, pp. 165–169.

[38] DappHub. DappTools. https://dapp.tools. Accessed: November 8, 2023.

[39] L. Tran. Compare the top 3 smart contract frameworks for web3 projects in 2022: Hard-
Hat, Truffle, and Foundry. https://medium.com/coinmonks/compare-the-top-3-
smart-contract-frameworks-for-web3-projects-in-2022-hardhat-truffle-and-
ca26c638c597. Accessed: October 30, 2023. 2022.

[40] O. Nordbjerg and other contributors. Foundry. https://book.getfoundry.sh. Ac-
cessed: July 29, 2023.

[41] G. Konstantopoulos and other contributors. Foundry GitHub Repository. https://
github.com/foundry-rs/foundry. Accessed: July 28, 2023. 2021.

[42] S. N. T.-c. Chiueh and S. Brook. “A survey on virtualization technologies”. In: Rpe
Report 142 (2005).

[43] Amazon Web Services, Inc. What’s the Difference Between Containers and Virtual Machines?
https://aws.amazon.com/compare/the-difference-between-containers-and-
virtual-machines. Accessed: November 8, 2023.

104

https://bitcoingold.org
https://hacken.io/discover/51-percent-attack
https://hacken.io/discover/51-percent-attack
https://www.quicknode.com/guides/ethereum-development/getting-started/what-is-the-ethereum-virtual-machine-evm
https://www.quicknode.com/guides/ethereum-development/getting-started/what-is-the-ethereum-virtual-machine-evm
https://www.quicknode.com/guides/ethereum-development/getting-started/what-is-the-ethereum-virtual-machine-evm
https://trufflesuite.com
https://hardhat.org
https://dapp.tools
https://medium.com/coinmonks/compare-the-top-3-smart-contract-frameworks-for-web3-projects-in-2022-hardhat-truffle-and-ca26c638c597
https://medium.com/coinmonks/compare-the-top-3-smart-contract-frameworks-for-web3-projects-in-2022-hardhat-truffle-and-ca26c638c597
https://medium.com/coinmonks/compare-the-top-3-smart-contract-frameworks-for-web3-projects-in-2022-hardhat-truffle-and-ca26c638c597
https://book.getfoundry.sh
https://github.com/foundry-rs/foundry
https://github.com/foundry-rs/foundry
https://aws.amazon.com/compare/the-difference-between-containers-and-virtual-machines
https://aws.amazon.com/compare/the-difference-between-containers-and-virtual-machines

Bibliography

[44] C. Pahl. “Containerization and the paas cloud”. In: IEEE Cloud Computing 2.3 (2015),
pp. 24–31.

[45] R. Dua, A. R. Raja, and D. Kakadia. “Virtualization vs containerization to support
paas”. In: 2014 IEEE International Conference on Cloud Engineering. IEEE. 2014, pp. 610–
614.

[46] Docker Inc. Docker Documentation. https://docs.docker.com. Accessed: November 8,
2023.

[47] T. Combe, A. Martin, and R. Di Pietro. “To docker or not to docker: A security
perspective”. In: IEEE Cloud Computing 3.5 (2016), pp. 54–62.

[48] T. Bui. “Analysis of docker security”. In: arXiv preprint arXiv:1501.02967 (2015).

[49] C. Burniske. Containers: The Next Generation of Virtualization? https://ark-invest.
com/articles/analyst-research/containers-virtualization. Accessed: Novem-
ber 8, 2023.

[50] Docker Inc. Docker Hub. https://hub.docker.com. Accessed: October 27, 2023.

[51] Docker Inc. Docker Compose. https://docs.docker.com/compose. Accessed: October
25, 2023.

[52] The Chair of Applied Software Engineering at TUM. Artemis: Interactive Learning with
Individual Feedback. https://docs.artemis.cit.tum.de. Accessed: November 9, 2023.

[53] The Chair of Computer Architecture and Parallel Systems at TUM. Parallel Programming
(IN2147). https://www.ce.cit.tum.de/caps/lehre/ss23/vorlesungen/parallel-
programming. Accessed: November 9, 2023.

[54] S. N. Raje. “Performance Comparison of Message Queue Methods”. PhD thesis.
University of Nevada, Las Vegas, 2019.

[55] S. Driessen, D. Di Nucci, G. Monsieur, D. A. Tamburri, and W.-J. v. d. Heuvel. “Auto-
mated test-case generation for solidity smart contracts: The AGSolT approach and its
evaluation”. In: arXiv preprint arXiv:2102.08864 (2021).

[56] F. Mi, C. Zhao, Z. Wang, S. Halim, X. Li, Z. Wu, L. Khan, and B. Thuraisingham. “An
Automated Vulnerability Detection Framework for Smart Contracts”. In: arXiv preprint
arXiv:2301.08824 (2023).

[57] C. Benabbou and Ö. Gürcan. “A survey of verification, validation and testing solutions
for smart contracts”. In: 2021 Third International Conference on Blockchain Computing and
Applications (BCCA). IEEE. 2021, pp. 57–64.

[58] Celo Academy. Truffle vs Hardhat: A Comprehensive Comparison for Developing on the
Celo Blockchain. https://celo.academy/t/truffle-vs-hardhat-a-comprehensive-
comparison-for-developing-on-the-celo-blockchain/2672. Accessed: November
9, 2023.

[59] A. Ufano. Smart Contract Frameworks – Foundry vs Hardhat: Differences in Performance
and Developer Experience. https://chainstack.com/foundry-hardhat-differences-
performance. Accessed: November 9, 2023. 2022.

105

https://docs.docker.com
https://ark-invest.com/articles/analyst-research/containers-virtualization
https://ark-invest.com/articles/analyst-research/containers-virtualization
https://hub.docker.com
https://docs.docker.com/compose
https://docs.artemis.cit.tum.de
https://www.ce.cit.tum.de/caps/lehre/ss23/vorlesungen/parallel-programming
https://www.ce.cit.tum.de/caps/lehre/ss23/vorlesungen/parallel-programming
https://celo.academy/t/truffle-vs-hardhat-a-comprehensive-comparison-for-developing-on-the-celo-blockchain/2672
https://celo.academy/t/truffle-vs-hardhat-a-comprehensive-comparison-for-developing-on-the-celo-blockchain/2672
https://chainstack.com/foundry-hardhat-differences-performance
https://chainstack.com/foundry-hardhat-differences-performance

Bibliography

[60] J. Chen, X. Xia, D. Lo, J. Grundy, X. Luo, and T. Chen. “Defectchecker: Automated
smart contract defect detection by analyzing evm bytecode”. In: IEEE Transactions on
Software Engineering 48.7 (2021), pp. 2189–2207.

[61] Z. Li, H. Wu, J. Xu, X. Wang, L. Zhang, and Z. Chen. “Musc: A tool for mutation
testing of ethereum smart contract”. In: 2019 34th IEEE/ACM International Conference
on Automated Software Engineering (ASE). IEEE. 2019, pp. 1198–1201.

[62] M. Myeza. Deploying Your Smart Contracts on a Testnet? This Is What You Can Expect.
https://www.rmb.co.za/page/deploying-your-smart-contracts-on-a-testnet-
this-is-what-you-can-expect. Accessed: November 9, 2023.

[63] Consensys. ConsenSys Diligence. https://consensys.io/diligence. Accessed: Novem-
ber 9, 2023.

[64] N. Cohen. What is Performance Testing? What is Load Testing? What is Stress Testing? A
Comparison. https://www.blazemeter.com/blog/performance-testing-vs-load-
testing-vs-stress-testing. Accessed: November 9, 2023.

[65] Suffescom Solutions Inc. Suffescom Solutions - Smart Contract Testing Services. https:
//www.suffescom.com/smart-contract-testing-service. Accessed: November 9,
2023.

[66] Crytic. Etheno. https://github.com/crytic/etheno. Accessed: November 9, 2023.

[67] M. T. Chung, N. Quang-Hung, M.-T. Nguyen, and N. Thoai. “Using docker in high
performance computing applications”. In: 2016 IEEE Sixth International Conference on
Communications and Electronics (ICCE). IEEE. 2016, pp. 52–57.

[68] D. Bonacorsi, G. Eulisse, T. Boccali, and E. Mazzoni. “Containerization of CMS appli-
cations with docker”. In: PoS (2016), p. 007.

[69] N. Naik. “Building a virtual system of systems using docker swarm in multiple
clouds”. In: 2016 IEEE International Symposium on Systems Engineering (ISSE). IEEE.
2016, pp. 1–3.

[70] Docker Inc. Docker Swarm. https://docs.docker.com/engine/swarm. Accessed:
October 26, 2023.

[71] C. Jansen, M. Witt, and D. Krefting. “Employing docker swarm on openstack for
biomedical analysis”. In: Computational Science and Its Applications–ICCSA 2016: 16th
International Conference, Beijing, China, July 4-7, 2016, Proceedings, Part II 16. Springer.
2016, pp. 303–318.

[72] C. Nance. Typescript essentials. Packt Publishing Ltd, 2014.

[73] VMware, Inc. RabbitMQ. https://www.rabbitmq.com. Accessed: October 23, 2023.

[74] Truffle - Blockchain Platform for Ethereum Smart Contracts. https://www.kaleido.io/
blockchain-platform/truffle. Accessed: July 25, 2023.

[75] P. Hartel and M. van Staalduinen. “Truffle tests for free – Replaying Ethereum smart
contracts for transparency”. In: 2019. arXiv: 1907.09208 [cs.SE].

106

https://www.rmb.co.za/page/deploying-your-smart-contracts-on-a-testnet-this-is-what-you-can-expect
https://www.rmb.co.za/page/deploying-your-smart-contracts-on-a-testnet-this-is-what-you-can-expect
https://consensys.io/diligence
https://www.blazemeter.com/blog/performance-testing-vs-load-testing-vs-stress-testing
https://www.blazemeter.com/blog/performance-testing-vs-load-testing-vs-stress-testing
https://www.suffescom.com/smart-contract-testing-service
https://www.suffescom.com/smart-contract-testing-service
https://github.com/crytic/etheno
https://docs.docker.com/engine/swarm
https://www.rabbitmq.com
https://www.kaleido.io/blockchain-platform/truffle
https://www.kaleido.io/blockchain-platform/truffle
https://arxiv.org/abs/1907.09208

Bibliography

[76] ConsenSys Software Inc. Truffle Documentation. https://trufflesuite.com/docs/
truffle. Accessed: July 25, 2023.

[77] ConsenSys Software Inc. Ganache. https://trufflesuite.com/ganache. Accessed:
July 25, 2023.

[78] Coinmonks. Deploying a Smart Contract with Truffle & Ganache. https://medium.com/
coinmonks/deploying-a-smart-contract-with-truffle-ganache-fde535318ed5.
Accessed: July 25, 2023.

[79] Nomic Labs LLC. Hardhat Documentation. https://hardhat.org/docs. Accessed: July
27, 2023.

[80] N. Rockson. Hardhat Versus Truffle: Which Smart Contract Framework is Best? https:
//www.slashauth.com/post/hardhat-vs-truffle. Accessed: October 30, 2023.

[81] Nomic Labs LLC. Hardhat Chai Matchers. https://hardhat.org/hardhat- chai-
matchers. Accessed: July 27, 2023.

[82] R. Moore. Ethers.js. https://docs.ethers.org. Accessed: July 27, 2023.

[83] Ethereum Revision. Web3.js. https://web3js.readthedocs.io. Accessed: July 27,
2023.

[84] D. Dauliya. Ethers vs Web3. https://guideofdapp.com/posts/ethers- vs- web3.
Accessed: July 27, 2023.

[85] G. Bierman, M. Abadi, and M. Torgersen. “Understanding TypeScript”. In: ECOOP
2014 – Object-Oriented Programming. Ed. by R. Jones. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2014, pp. 257–281. isbn: 978-3-662-44202-9.

[86] G. Klees, A. Ruef, B. Cooper, S. Wei, and M. Hicks. “Evaluating Fuzz Testing”. In:
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security.
CCS ’18. Toronto, Canada: Association for Computing Machinery, 2018, pp. 2123–2138.
isbn: 9781450356930. doi: 10.1145/3243734.3243804. url: https://doi.org/10.
1145/3243734.3243804.

[87] O. Nordbjerg and other contributors. Foundry Cheatcodes Reference. https://book.
getfoundry.sh/cheatcodes. Accessed: July 29, 2023.

[88] J. Spruance. Vending Machine Source Code. https://github.com/jspruance/block-
explorer-tutorials/blob/main/apps/VendingMachine/vending-machine/contracts/
VendingMachine.sol. Accessed: July 31, 2023. 2022.

[89] B. Öz. BBSE Bank 2.0 GitHub Repository. https://github.com/sebischair/bbse-bank-
2.0. Accessed: July 31, 2023. 2022.

[90] B. Öz. BBSE Bank GitHub Repository. https://github.com/sebischair/bbse-bank.
Accessed: July 31, 2023. 2022.

[91] zOS Global Limited and contributors. OpenZeppelin GitHub Repository. https://github.
com/OpenZeppelin/openzeppelin-contracts. Accessed: July 31, 2023. 2016.

107

https://trufflesuite.com/docs/truffle
https://trufflesuite.com/docs/truffle
https://trufflesuite.com/ganache
https://medium.com/coinmonks/deploying-a-smart-contract-with-truffle-ganache-fde535318ed5
https://medium.com/coinmonks/deploying-a-smart-contract-with-truffle-ganache-fde535318ed5
https://hardhat.org/docs
https://www.slashauth.com/post/hardhat-vs-truffle
https://www.slashauth.com/post/hardhat-vs-truffle
https://hardhat.org/hardhat-chai-matchers
https://hardhat.org/hardhat-chai-matchers
https://docs.ethers.org
https://web3js.readthedocs.io
https://guideofdapp.com/posts/ethers-vs-web3
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/3243734.3243804
https://doi.org/10.1145/3243734.3243804
https://book.getfoundry.sh/cheatcodes
https://book.getfoundry.sh/cheatcodes
https://github.com/jspruance/block-explorer-tutorials/blob/main/apps/VendingMachine/vending-machine/contracts/VendingMachine.sol
https://github.com/jspruance/block-explorer-tutorials/blob/main/apps/VendingMachine/vending-machine/contracts/VendingMachine.sol
https://github.com/jspruance/block-explorer-tutorials/blob/main/apps/VendingMachine/vending-machine/contracts/VendingMachine.sol
https://github.com/sebischair/bbse-bank-2.0
https://github.com/sebischair/bbse-bank-2.0
https://github.com/sebischair/bbse-bank
https://github.com/OpenZeppelin/openzeppelin-contracts
https://github.com/OpenZeppelin/openzeppelin-contracts

Bibliography

[92] OpenJS Foundation and Mocha contributors. Mocha. https://mochajs.org. Accessed:
July 31, 2023.

[93] Chai.js Assertion Library. Chai Assertion Library. https://www.chaijs.com. Accessed:
July 31, 2023.

[94] S. Nnebe, C. Okafor, T. Onyeyili, and G. Nathaniel. “Design and Implementation of
Decentralized Voting System on the Ethereum Blockchain”. In: International Journal of
Computer (IJC) 45.1 (2022), pp. 95–104.

[95] R. Kalis. truffle-assertions. https://github.com/rkalis/truffle-assertions. Ac-
cessed: July 30, 2023.

[96] M. Wöhrer and U. Zdun. “DevOps for Ethereum Blockchain Smart Contracts”. In:
2021 IEEE International Conference on Blockchain (Blockchain). IEEE. 2021, pp. 244–251.
doi: 10.1109/Blockchain53845.2021.00040.

[97] O. Nordbjerg and other contributors. Foundry DSTest. https://book.getfoundry.sh/
reference/ds-test. Accessed: July 30, 2023.

[98] A. Rea. solidity-coverage. https://github.com/sc-forks/solidity-coverage. Ac-
cessed: July 30, 2023.

[99] O. Nordbjerg and other contributors. Foundry Debugger. https://book.getfoundry.
sh/forge/debugger. Accessed: July 30, 2023.

[100] Ethworks sp z o.o. Waffle. https://github.com/TrueFiEng/Waffle. Accessed: July 31,
2023.

[101] Ethworks sp z o.o. Waffle’s Mocking Mechanism. https://ethereum-waffle.readthedocs.
io/en/latest/mock-contract.html. Accessed: July 31, 2023.

[102] O. Nordbjerg and other contributors. Foundry Mocking. https://book.getfoundry.
sh/cheatcodes/mock-call. Accessed: July 31, 2023.

[103] Y. Kissoon and G. Bekaroo. “Detecting vulnerabilities in smart contract within blockchain:
a review and comparative analysis of key approaches”. In: 2022 3rd International Con-
ference on Next Generation Computing Applications (NextComp). IEEE. 2022, pp. 1–6.

[104] O. Nordbjerg and other contributors. Forge Fuzzer. https://book.getfoundry.sh/
forge/fuzz-testing. Accessed: July 31, 2023.

[105] M. Goldmann. Resource Management in Docker. https://goldmann.pl/blog/2014/09/
11/resource-management-in-docker. Accessed: August 9, 2023. 2016.

[106] P. Samuel and A. T. Joseph. “Test sequence generation from UML sequence diagrams”.
In: 2008 Ninth ACIS International Conference on Software Engineering, Artificial Intelligence,
Networking, and Parallel/Distributed Computing. IEEE. 2008, pp. 879–887.

[107] M. H. Ibrahim, M. Sayagh, and A. E. Hassan. “A study of how Docker Compose
is used to compose multi-component systems”. In: Empirical Software Engineering 26
(2021), pp. 1–27.

108

https://mochajs.org
https://www.chaijs.com
https://github.com/rkalis/truffle-assertions
https://doi.org/10.1109/Blockchain53845.2021.00040
https://book.getfoundry.sh/reference/ds-test
https://book.getfoundry.sh/reference/ds-test
https://github.com/sc-forks/solidity-coverage
https://book.getfoundry.sh/forge/debugger
https://book.getfoundry.sh/forge/debugger
https://github.com/TrueFiEng/Waffle
https://ethereum-waffle.readthedocs.io/en/latest/mock-contract.html
https://ethereum-waffle.readthedocs.io/en/latest/mock-contract.html
https://book.getfoundry.sh/cheatcodes/mock-call
https://book.getfoundry.sh/cheatcodes/mock-call
https://book.getfoundry.sh/forge/fuzz-testing
https://book.getfoundry.sh/forge/fuzz-testing
https://goldmann.pl/blog/2014/09/11/resource-management-in-docker
https://goldmann.pl/blog/2014/09/11/resource-management-in-docker

Bibliography

[108] A. Chauhan. “A review on various aspects of MongoDb databases”. In: Int. J. Eng. Res.
Sci. Technol 8.5 (2019), pp. 90–92.

[109] S. Ahmed and Q. Mahmood. “An authentication based scheme for applications using
JSON web token”. In: 2019 22nd international multitopic conference (INMIC). IEEE. 2019,
pp. 1–6.

[110] E. You. Vue.js. https://vuejs.org. Accessed: October 26, 2023.

[111] M. A. Mohamed, O. G. Altrafi, and M. O. Ismail. “Relational vs. nosql databases: A
survey”. In: International Journal of Computer and Information Technology 3.03 (2014),
pp. 598–601.

[112] P. Dias. Dockerode. https://github.com/apocas/dockerode. Accessed: October 27,
2023.

[113] StrongLoop, IBM, and other contributors. Express.js. https://expressjs.com. Ac-
cessed: October 27, 2023.

[114] J. Xu, Y. Wu, Z. Lu, and T. Wang. “Dockerfile tf smell detection based on dynamic
and static analysis methods”. In: 2019 ieee 43rd annual computer software and applications
conference (compsac). Vol. 1. IEEE. 2019, pp. 185–190.

[115] O. Nordbjerg and other contributors. Foundry Configuration File (foundry.toml). https:
//book.getfoundry.sh/config. Accessed: October 28, 2023.

[116] A. Mouat. Docker. O’Reilly Japan, Incorporated, 2016.

[117] A. Chaturvedi et al. “Comparison of Different Authentication Techniques and Steps
to Implement Robust JWT Authentication”. In: 2022 7th International Conference on
Communication and Electronics Systems (ICCES). IEEE. 2022, pp. 772–779.

[118] J. Jung. What are Salted Passwords and Password Hashing? https://www.okta.com/blog/
2019/03/what-are-salted-passwords-and-password-hashing. Accessed: October
20, 2023. 2021.

[119] Another-D-Mention Software and other contributors. adm-zip. https://github.com/
cthackers/adm-zip. Accessed: October 20, 2023.

[120] N. Q. Uy and V. H. Nam. “A comparison of AMQP and MQTT protocols for Internet
of Things”. In: 2019 6th NAFOSTED Conference on Information and Computer Science
(NICS). IEEE. 2019, pp. 292–297.

[121] VMware, Inc. AMQP 0-9-1 Model Explained. https://www.rabbitmq.com/tutorials/
amqp-concepts.html. Accessed: October 23, 2023.

[122] VMware, Inc. RabbitMQ Clustering Guide. https://www.rabbitmq.com/clustering.
html. Accessed: October 23, 2023.

[123] Docker Inc. Docker Bridge Network Driver. https://docs.docker.com/network/
drivers/bridge. Accessed: October 25, 2023.

[124] A. MacGregor. The Complete Guide to Docker Secrets. https://earthly.dev/blog/
docker-secrets. Accessed: October 26, 2023.

109

https://vuejs.org
https://github.com/apocas/dockerode
https://expressjs.com
https://book.getfoundry.sh/config
https://book.getfoundry.sh/config
https://www.okta.com/blog/2019/03/what-are-salted-passwords-and-password-hashing
https://www.okta.com/blog/2019/03/what-are-salted-passwords-and-password-hashing
https://github.com/cthackers/adm-zip
https://github.com/cthackers/adm-zip
https://www.rabbitmq.com/tutorials/amqp-concepts.html
https://www.rabbitmq.com/tutorials/amqp-concepts.html
https://www.rabbitmq.com/clustering.html
https://www.rabbitmq.com/clustering.html
https://docs.docker.com/network/drivers/bridge
https://docs.docker.com/network/drivers/bridge
https://earthly.dev/blog/docker-secrets
https://earthly.dev/blog/docker-secrets

Bibliography

[125] J. J. Leider. Vuetify. https://vuetifyjs.com/en. Accessed: October 26, 2023.

[126] C. Slingerland. Horizontal Vs. Vertical Scaling: How Do They Compare? https://www.
cloudzero.com/blog/horizontal- vs- vertical- scaling. Accessed: October 26,
2023.

[127] Google, Rancher Labs, and Cloud Native Computing Foundation. Kubernetes. https:
//kubernetes.io. Accessed: October 26, 2023.

[128] R. Powell. Docker Swarm vs Kubernetes: how to choose a container orchestration tool. https:
//circleci.com/blog/docker-swarm-vs-kubernetes. Accessed: October 26, 2023.

[129] N. Marathe, A. Gandhi, and J. M. Shah. “Docker swarm and kubernetes in cloud
computing environment”. In: 2019 3rd International Conference on Trends in Electronics
and Informatics (ICOEI). IEEE. 2019, pp. 179–184.

[130] A. M. Beltre, P. Saha, M. Govindaraju, A. Younge, and R. E. Grant. “Enabling HPC
workloads on cloud infrastructure using Kubernetes container orchestration mecha-
nisms”. In: 2019 IEEE/ACM International Workshop on Containers and New Orchestration
Paradigms for Isolated Environments in HPC (CANOPIE-HPC). IEEE. 2019, pp. 11–20.

[131] K. Chodorow. Scaling MongoDB: Sharding, Cluster Setup, and Administration. "O’Reilly
Media, Inc.", 2011.

[132] MongoDB, Inc. MongoDB Atlas. https://cloud.mongodb.com. Accessed: October 26,
2023.

[133] T. Sharvari and K. Sowmya Nag. “A study on modern messaging systems-kafka,
rabbitmq and nats streaming”. In: CoRR abs/1912.03715 (2019).

[134] F5, Inc. Nginx. https://www.nginx.com. Accessed: November 9, 2023.

[135] The Apache Software Foundation. Apache. https://httpd.apache.org. Accessed:
November 9, 2023.

[136] M. Boers. “Designing effective graphs to get your message across”. In: Annals of the
rheumatic diseases 77.6 (2018), pp. 833–839.

[137] N. C. Zakas. ESLint. https://eslint.org. Accessed: November 8, 2023.

[138] J. Long et al. lint-staged. https://prettier.io. Accessed: November 8, 2023.

[139] Typicode. Husky. https://typicode.github.io/husky. Accessed: November 8, 2023.

[140] A. Okonetchnikov. lint-staged. https://github.com/lint- staged/lint- staged.
Accessed: November 8, 2023.

[141] N. Shtein. Exit Codes In Containers & Kubernetes – The Complete Guide. https://komodor.
com/learn/exit-codes-in-containers-and-kubernetes-the-complete-guide.
Accessed: October 22, 2023.

110

https://vuetifyjs.com/en
https://www.cloudzero.com/blog/horizontal-vs-vertical-scaling
https://www.cloudzero.com/blog/horizontal-vs-vertical-scaling
https://kubernetes.io
https://kubernetes.io
https://circleci.com/blog/docker-swarm-vs-kubernetes
https://circleci.com/blog/docker-swarm-vs-kubernetes
https://cloud.mongodb.com
https://www.nginx.com
https://httpd.apache.org
https://eslint.org
https://prettier.io
https://typicode.github.io/husky
https://github.com/lint-staged/lint-staged
https://komodor.com/learn/exit-codes-in-containers-and-kubernetes-the-complete-guide
https://komodor.com/learn/exit-codes-in-containers-and-kubernetes-the-complete-guide

	Acknowledgements and Code Repositories
	Abstract
	Contents
	Introduction
	Motivation
	Objectives and Purpose of the Thesis
	Research Questions
	Core Use Case
	Structure of the Thesis

	Theoretical Background
	Blockchain Technology
	Smart Contracts
	Solidity Programming Language
	Smart Contract Testing
	Test Runner Frameworks

	Containerization
	Docker

	Related Work
	Methodology
	Test Runner Framework Evaluation and Selection
	Design and Appraisal of the Final Testing Service
	Simultaneous Submission Management
	Service Security and Stability
	Scalability and Service Distribution
	Efficiency and Performance Analysis

	Comparative Analysis of Test Runner Frameworks
	Overview of Test Runner Frameworks
	Truffle
	Hardhat
	Foundry

	Selected Smart Contract Projects for Analysis
	Usability and Development Experience
	Truffle
	Hardhat
	Foundry

	Features and Tooling
	Code Coverage
	Assertion Libraries for Testing
	Debugging
	Mocking
	Fuzz Testing
	Gas and Memory Limit

	Test Output and Performance Metrics
	Gas Usage as a Performance Metric

	Truffle vs. Hardhat vs. Foundry: Intermediate Performance Results
	Containerization and Scalability Assessment
	Setup
	Optimization
	Image Sizes
	Performance Results
	Scalability Assessment
	Lessons Learned and Conclusion

	Discussion and Recommendation

	System Design and Implementation
	Stakeholders and Requirements
	Stakeholders
	Functional Requirements
	Non-Functional Requirements

	High-Level Flow
	Architecture
	Test Runner
	Backend Services
	RabbitMQ Instance (Message Queueing)
	Frontend Application

	Implementation Details
	Database Selection and Data Model
	Test Runner
	Backend Services
	Message Queueing and Inter-Service Communication
	Service Network Configuration and Isolation
	Secret Management
	Frontend Application

	Security and Stability
	Handling Errors and Crashes in Contract Executions
	Mitigating Accidental or Intentional System Overloads

	Scalability
	Container Orchestration Tool: Kubernetes or Docker Swarm?
	Database Considerations
	RabbitMQ Cluster
	Preparing New Nodes

	Deployment

	Results and Evaluation
	Security and Stability
	Efficiency and Performance

	Conclusion
	Summary
	Future Work
	Documentation and Continued Maintenance

	Sample Solidity Test Cases
	Performance Figures of Test Runner Frameworks
	Containerization
	Scalability Capabilities

	In-depth Docker Configurations
	Dockerfile for Project Image Creation
	Docker Exit Codes

	Listing of REST Endpoints
	Endpoints for Backend Services

	Testing Service Screenshots
	Analysis of Faulty Submissions
	Analysis of Successful Submissions

	List of Abbreviations
	List of Figures
	List of Tables
	Listings
	Bibliography

